Short Circuit Ratio of a Synchronous Machine

Edwiin
06/04/2025

The Short Circuit Ratio (SCR) of a Synchronous Machine
The Short Circuit Ratio (SCR) of a synchronous machine is defined as the ratio of the field current needed to generate rated voltage under open-circuit conditions to the field current required to sustain rated armature current during a short-circuit condition. For a three-phase synchronous machine, the SCR can be derived from its Open-Circuit Characteristic (O.C.C) at rated speed and Short-Circuit Characteristic (S.C.C), as illustrated in the figure below:
From the above figure, the short circuit ratio is given by the equation shown below.
Since the triangles Oab and Ode are similar. Therefore,
Direct Axis Synchronous Reactance (Xd)
The direct axis synchronous reactance Xd is defined as the ratio of the open-circuit voltage corresponding to a specific field current to the armature short-circuit current under the same field current condition.
For a field current of magnitude Oa, the direct axis synchronous reactance (in ohms) is expressed by the following equation:
Relationship Between SCR and Synchronous Reactance
From equation (7), it is evident that the Short Circuit Ratio (SCR) equals the reciprocal of the per-unit direct axis synchronous reactance Xd. In a saturated magnetic circuit, the value of Xd is contingent upon the degree of magnetic saturation.
Significance of the Short Circuit Ratio (SCR)
The SCR is a critical parameter for synchronous machines, influencing their operational characteristics, physical dimensions, and cost. Key implications include:
  • Voltage Regulation Impact
    • Synchronous generators with lower SCR values exhibit more pronounced terminal voltage fluctuations with load changes. Maintaining constant terminal voltage requires wide-ranging adjustments to the field current If).
  • Stability Limitations
    • A smaller SCR corresponds to reduced synchronizing power, which is essential for maintaining synchronism. This results in a lower stability limit, meaning machines with low SCR are less stable when operating in parallel with other generators.
  • Trade-offs in Design
    • High-SCR machines offer superior voltage regulation and enhanced steady-state stability but entail higher armature short-circuit fault currents. Additionally, they influence machine size and cost due to design trade-offs.
The excitation voltage of a synchronous machine is described by the equation:
For the same value of Tph Excitation voltage is directly proportional to the field flux per pole.
The synchronous inductance is given as:
Relationship Between SCR and Air Gap
Thus, the Short Circuit Ratio (SCR) is directly proportional to the air gap reluctance or air gap length. Increasing the air gap length elevates the SCR, though this requires a higher field magnetomotive force (MMF) to maintain the same excitation voltage (). To increase the field MMF, either the field current or the number of field turns must be augmented, necessitating taller field poles and an enlarged machine diameter.
Impact on Machine Design
This leads to a key conclusion: a higher SCR inherently increases the size, weight, and cost of the synchronous machine.
Typical SCR Values by Machine Type
  • Cylindrical Rotor Machines: SCR ranges from 0.5 to 0.9.
  • Salient-Pole Machines: SCR falls between 1.0 and 1.5.
  • Synchronous Compensators: SCR is typically 0.4.
These values reflect the design trade-offs between stability, voltage regulation, and physical dimensions in different synchronous machine configurations.
Edwiin

Generator Protection – Types of Faults & Protection Devices
Generator Protection – Types of Faults & Protection Devices
Common Generator Faults and Protection SystemsClassification of Generator FaultsGenerator faults are primarily categorized into internal and external types:Internal Faults: Arise from issues within generator components.External Faults: Stem from abnormal operating conditions or external network issues.Faults in prime movers (e.g., diesel engines, turbines) are mechanical in nature and defined during equipment design, though they must integrate with generator protections for tripping purposes.Typ
Edwiin
06/05/2025
Equivalent Circuit of a Transformer
Equivalent Circuit of a Transformer
The equivalent circuit diagram of any device can be extremely useful for predicting how the device will behave under different operating conditions. It is essentially a circuit - based depiction of the equations that describe the device's performance.The simplified equivalent circuit of a transformer is constructed by representing all of the transformer's parameters on either the secondary side or the primary side. The equivalent circuit diagram of the transformer is presented below:Let the equi
Edwiin
06/03/2025
Transformer On Load Condition
Transformer On Load Condition
Transformer Operation Under Load ConditionsWhen a transformer is under load, its secondary winding connects to a load, which can be resistive, inductive, or capacitive. A current I2 flows through the secondary winding, with its magnitude determined by the terminal voltageV2and load impedance. The phase angle between the secondary current and voltage depends on the load characteristics.Explanation of Transformer Load OperationThe operational behavior of a transformer under load is detailed as fol
Edwiin
06/03/2025
What is Transformer Vector Groups?
What is Transformer Vector Groups?
Transformer Vector Group DefinitionThe transformer vector group denotes the phase difference between the primary and secondary sides of a transformer, while also defining the arrangement of high-voltage and low-voltage windings in three-phase transformers. Vector groups are determined by the connection configurations of three-phase transformers, which can be categorized into four main groups based on the phase difference between corresponding line voltages of the high-voltage and low-voltage sid
Edwiin
06/02/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!