• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Specifications or Rating of Power Capacitor Bank

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Capacitor Bank Definition


A capacitor bank is defined as a group of capacitors used to store and release electrical energy in a power system, helping to improve power quality.


System Voltage Tolerance


Capacitor banks must operate smoothly at up to 110% of the rated peak phase voltage and 120% of the rated RMS phase voltage.


KVAR Rating


Capacitor unit are normally rated with its KVAR ratings. Standard capacitor unit available at market, are typically rated with either of following KVAR rating.50 KVAR, 100 KVAR, 150 KVAR, 200 KVAR, 300 KVAR and 400 KVAR.The KVAR delivered to the power system depends upon the system voltage by the following formula.

 

66df1878cf1f69b0b6a05bcbe3d85500.jpeg

 

Temperature Rating of a Capacitor Bank


These are mainly two cause of farming heat on a capacitor bank.

 

Outdoor type capacitor bank are generally installed at open space where sunlight strikes on the capacitor unit directly. Capacitor can also absorb heat from the nearly furnace for which it is installed.

Production of heat in the capacitor unit is also initiated from the VAR delivering by the unit.



Hence, for radiation of these heats, there should be sufficient arrangement. The maximum allowable ambient temperatures in which a capacitor bank should be operated are given below in tabular form,


Heat Management


Proper ventilation and spacing are necessary to manage heat from external and internal sources to maintain capacitor bank efficiency.


9de956987363bc28fd88075e7628bcdd.jpeg

 

To ensure proper ventilation, there should be adequate spacing between capacitor units. Sometimes, forced airflow can be used to speed up heat dissipation from the bank.


Capacitor Bank Unit or Capacitor Unit


Capacitor bank units or simply called capacitor units are manufactured in either single phase or three phase configuration.


Single Phase Capacitor Unit


Single phase capacitor units are designed either double bushing or single bushing.


Double Bushing Capacitor Unit


Here, the terminal of the both ends of capacitor assembly are come out from the metallic casing of the unit through two bushing. The entire capacitor assembly, this is series parallel combination of required number of capacitive elements is immersed in insulating fluid casing. Hence, there will be an insulated separation between conducting part of the capacitor element assembly go through bushing, there will be no connection between conductor and casing. That is why double bushing capacitor unit is known as dead tank capacitor unit.


Single Bushing Capacitor Unit


In this case casing of the unit is used as second terminal of assembly of capacitor element. Here single bushing is used to terminal one end of the assembly and its other terminal is internally connected to the metallic casing. This is possible because except terminal, all other conducting portion of the capacitor assembly is insulated from the casing.


Three Bushing Capacitor Unit


A three phase capacitor unit has three bushings to terminate 3 phase respectively. There is no neutral terminal in 3 phase capacitor unit.


BIL or Basic Insulation Level of Capacitor Unit


Like other electrical equipments a capacitor bank has also to with stand different voltage conditions, like power frequency over voltages and lightening and switching over voltages.

So Basic Insulation Level must be specified on every capacitor unit rating plate.

 

Internal Discharge Device


Capacitor units usually have an internal discharge device that quickly reduces residual voltage to a safe level, typically 50 V or less, within a specified time. The discharge period is part of the unit’s rating.

 

Transient Over Current Rating


Power capacitor may undergo over current situating during switching operation. So the capacitor unit must be rated for allowable short circuit current for specified time period.So, a capacitor unit should be rated with all the above mentioned parameters.


So a power capacitor unit can be rated as follows,


  • Nominal system voltage in KV.



  • System power frequency in Hz.



  • Temperature class with allowable maximum and minimum temperature in oC.



  • Rated voltage per unit in KV.



  • Rated output in KVAR.



  • Rated capacitance in µF.



  • Rated current in Amp.



  • Rated insulation level (Nominal voltage/Impulse voltage).



  • Discharge time/voltage in second/voltage.



  • Fusing arrangement either internally fused or externally fused or fuseless.



  • Number of bushing, double/single/triple bushing.


  • Number of phase. Single phase or three phase.



Give a tip and encourage the author!
Recommended
MVDC: Future of Efficient, Sustainable Power Grids
MVDC: Future of Efficient, Sustainable Power Grids
The Global Energy Landscape Is Undergoing a Fundamental Transformation toward a "fully electrified society," characterized by widespread carbon-neutral energy and the electrification of industry, transportation, and residential loads.In today’s context of high copper prices, critical mineral conflicts, and congested AC power grids, Medium-Voltage Direct Current (MVDC) systems can overcome many limitations of traditional AC networks. MVDC significantly enhances transmission capacity and efficienc
Edwiin
10/21/2025
Grounding Causes of Cable Lines and the Principles of Incident Handling
Grounding Causes of Cable Lines and the Principles of Incident Handling
Our 220 kV substation is located far from the urban center in a remote area, surrounded primarily by industrial zones such as Lanshan, Hebin, and Tasha Industrial Parks. Major high-load consumers in these zones—including silicon carbide, ferroalloy, and calcium carbide plants—account for approximately 83.87% of our bureau’s total load. The substation operates at voltage levels of 220 kV, 110 kV, and 35 kV.The 35 kV low-voltage side mainly supplies feeders to ferroalloy and silicon carbide plants
Felix Spark
10/21/2025
Overhead Power Lines & Towers: Types, Design & Safety
Overhead Power Lines & Towers: Types, Design & Safety
Besides ultra-high voltage AC substations, what we encounter more frequently are power transmission and distribution lines. Tall towers carry conductors that leap across mountains and seas, stretching into the distance before reaching cities and villages. This is also an interesting topic—today, let's explore transmission lines and their supporting towers.Power Transmission and DistributionFirst, let’s understand how electricity is delivered. The electric power industry primarily consists of fou
Encyclopedia
10/21/2025
Automatic Reclosing Modes: Single, Three-Phase & Composite
Automatic Reclosing Modes: Single, Three-Phase & Composite
General Overview of Automatic Reclosing ModesTypically, automatic reclosing devices are categorized into four modes: single-phase reclosing, three-phase reclosing, composite reclosing, and disabled reclosing. The appropriate mode can be selected based on load requirements and system conditions.1. Single-Phase ReclosingMost 110kV and higher transmission lines employ three-phase single-shot reclosing. According to operational experience, over 70% of short-circuit faults in high-voltage overhead li
Edwiin
10/21/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.