• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is Induction Cup Relay?

Encyclopedia
Field: Encyclopedia
0
China

What is Induction Cup Relay?


Induction Cup Relay


This relay is a version of the induction disc relay. Induction cup relays work on the same principle as induction disc relays. The basic construction of this relay is similar to a four-pole or eight-pole induction motor. The number of poles in the protective relay depends on the number of windings needed. The figure shows a four-pole induction cup relay.


When the disc of an induction relay is replaced by an aluminum cup, the inertia of the rotating system is greatly reduced. This lower mechanical inertia allows the induction cup relay to operate much faster than the induction disc relay. Additionally, the projected pole system is designed to provide maximum torque per VA input.


 

In four pole unit, shown in our example, the eddy current produced in the cup due to one pair of poles, directly appears under other pair of poles. This makes, torque per VA of this relay is about three times more than that of induction disc type relay with a C-shaped electromagnet. If magnetic saturation of the poles can be avoided by designing, the operating characteristics of the relay can be made linear and accurate for a wide range of operation.


Working Principle of Induction Cup Relay


As we said earlier, the working principle of induction cup relay, is same as the induction motor. A rotating magnetic field is produced by different pairs of field poles. In four poles design both pair of poles are supplied from same current transformer’s secondary, but phase difference between the currents of two pole pairs is 90 deg; This is done by inserting an inductor in series with coil of one pole pair, and by inserting a resistor in series with coil of another pole pair.

 


The rotating magnetic field induces current in the aluminum brum or cup. As per working principle of induction motor, the cup starts rotating in the direction of rotating magnetic field, with a speed slightly less than the speed of rotating magnetic field. 


The aluminum cup is attached with a hair spring : In normal condition the restoring torque of the spring is higher than deflecting torque of the cup. So there is no movement of the cup. But during faulty condition of system, the current through the coil is quite high, hence, deflecting torque produced in the cup is much higher than restoring torque of spring, hence the cup start rotating as rotor of induction motor. The contacts attached to the moving of the cup to specific angle of rotation.


Construction of Induction Cup Relay


The magnetic system of the relay is built using circular cut steel sheets. The magnetic poles are projected on the inner edges of these laminated sheets.The field coils are wound on these laminated poles. The field coil of two opposite facing poles are connected in series.


The aluminum cup or drum, fitted on a laminated iron core is carried by a spindle whose ends fit in jeweled cups or bearings. The laminated magnetic field is provided on inside the cup or drum to strengthen the magnetic field cutting the cup.


230a0bc0e332e9189240e429f421f7a9.jpeg



Induction Cup Directional or Power Relay


Induction cup relays are very suitable for directional or phase comparison units. They provide steady, non-vibrating torque and have minimal parasitic torques due to current or voltage alone.


In induction cup directional or power relay, coils of one pair of poles are connected across voltage source, and coils of another pair of poles are connected with current source of the system. Hence, flux produced by one pair of poles is proportional to voltage and flux produced by another pair of poles is proportional to electric current.


The vector diagram of this relay can be represented as follows,


Here, in the vector diagram, the angle between system voltage V and current I is θThe flux produced due to current I is φ1 which is in phase with I. The flux produced due to voltage V, is φ2 which is in quadrature with V.Hence, angle between φ1 and φ2 is (90o – θ).Therefore, if torque produced by these two fluxes is Td.Where, K is constant of proportionality.


Here in this equation we have assumed that, flux produced by voltage coil lags 90 o behind its voltage. By designing this angle can be made to approach any value and a torque equation T = KVIcos (θ – φ) obtained where θ is angle between V and I. Accordingly, induction cup relays can be designed to produce maximum torque when the angle θ = 0 or 30o, 45o or 60o.


6db7f13f09f15de1c7d32903a6ef7f20.jpeg


The relays which are such designed, that, they produce maximum torque at θ = 0, is P induction cup power relay.The relays produce maximum torque when θ = 45o or 60o, are used as directional protection relay.


Reactance and MHO type Induction Cup Relay


By manipulating the current voltage coil arrangements and the relative phase displacement angles between the various fluxes, induction cup relay can be made to measure either pure reactance or admittance. Such characteristics are discussed in greater detail in a session on electromagnetic distance relay. 

 

 


Give a tip and encourage the author!
Recommended
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
Edwiin
08/30/2025
Transformer Connection Sections
Transformer Connection DesignationsThe transformer connection designation indicates the winding connection method and the phase relationship between the line voltages of the primary and secondary windings. It consists of two parts: letters and a number. The letters on the left denote the connection configurations of the high-voltage and low-voltage windings, while the number on the right is an integer from 0 to 11.This number represents the phase shift of the low-voltage winding's line voltage r
Encyclopedia
08/15/2025
Related Products
  • IPXX Series Ingress Protection professional testing tool
  • KW-1 Series simulation rain - shower tester
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.