What are the application and improvement directions of current transformers in power systems?

Echo
07/04/2025

As a front - line power operation and maintenance worker, I deal with current transformers (CTs) daily. Having witnessed the popularization of new photoelectric CTs and tackled numerous faults, I’ve gained practical insights into their application and testing improvements. Below, I’ll share my on - site experience with new CTs in power systems, aiming for a balance between professionalism and practicality.
1. Application of New CTs in Power Systems
1.1 CTs in Power Systems
Most new CTs are photoelectric, categorized into iron - cored and coreless types. Iron - cored CTs, though prone to leakage current, electromagnetic saturation, and hysteresis in complex environments (e.g., high temperatures, strong magnetic fields), and with limited sensing head material precision (susceptible to nonlinear changes under extreme conditions), remain adaptable to modern high - voltage, large - unit power grids. Leveraging fiber optic sensing materials’ insulation advantages, they enable fiber optic light transmission, avoiding common issues of ordinary CTs—hence their widespread use in ultra - high - voltage transmission lines.
In practice, I’ve seen ordinary CTs suffer erratic data under strong electromagnetic interference, while photoelectric CTs restore stability—highlighting the new CTs’ practical value.
1.2 Protecting Large Generator Sets
Large generator sets (e.g., generators, main transformers) demand high transient performance from CTs. Previously plagued by transient saturation and remanence, new CTs now resolve these issues. Notably, 500kV “iron - cored with air gap” CTs boast high excitation impedance, providing stable protection for units, preventing transient saturation and remanence.
For instance, Huayi Electric Power’s TPY - level CTs for 300–600MW units, selected for transient characteristics and remanence limitation, ensure “no maloperation outside protection zones and correct tripping inside”. During unit protection commissioning, these CTs reliably suppress non - periodic short - circuit current components, avoiding protection misfires.
1.3 Automatic Relay Protection
Relay protection acts as the power grid’s “emergency doctor”, with CTs as its “stethoscope”. As grid automation advances, relay protection must evolve—CTs’ automatic adaptability directly impacts the system’s intelligence.
In faults, CTs must swiftly transmit current signals to protection devices for accurate fault isolation. New CTs offer faster response and precision, aligning with smart grid demands—critical for power automation.
2. CT Testing Improvements (Front - line Solutions)
With CT specifications ranging 20A–720A, our team developed an improved testing scheme to standardize processes, reduce human error, and simplify preparation.
2.1 Test Scheme Design
Focused on “integration + precision”, we use a dedicated single - phase current source for tested CT phases, switch current ranges via a conversion unit, monitor input with a standard meter (A1), and integrate phase angle measurement, standard CTs, conversion units, and meters into a test bench—streamlining tests.
(1) Current Source Selection
Abandoning unstable generator - set signal sources, we adopt a high - quality intermediate - frequency power supply paired with an auto - transformer and current booster to create a constant - current source (0–800A output), covering all AC CT tests and resolving primary - side current fluctuations.
(2) Test Line Principle
The closed loop “auto - transformer → current booster → standard CT → tested CT → intermediate - frequency power supply” operates at ~120V (intermediate - frequency output). Current adjustment relies on the auto - transformer (fixed current - booster ratio). To minimize fluctuations, the current booster output is short - circuited with a copper bus bar (shortened for less heat, stable current, and energy savings).
Passing the same current through all three phases of the tested CT reduces phase - to - phase current differences and boosts test efficiency—proven effective in batch testing.
3. Conclusion (Front - line Insights)
CT fault diagnosis is critical and systematic. As front - line staff, mastering CT principles and following protocols is essential—safety first! Always cut power before diagnosis/troubleshooting to avoid risks.
New CTs enhance grid operation and maintenance, but testing/diagnosis knowledge must keep pace. Understanding application scenarios and implementing test improvements ensures CTs serve as the power grid’s “loyal guards”.
Echo

As an expert in the application and trends of electrical equipment, I have a profound mastery of knowledge in circuits, power electronics, etc. I possess a comprehensive set of abilities including equipment design, fault diagnosis, and project management. I can precisely grasp the industry's pulse and lead the development of the electrical field.

What are the monitoring methods and future development trends of low-voltage voltage transformers?
What are the monitoring methods and future development trends of low-voltage voltage transformers?
With the continuous advancement of smart grid technology, intelligent monitoring systems are playing an increasingly important role in preventing and addressing faults in voltage transformers. These modern intelligent monitoring systems can collect key parameters from voltage transformers in real time—such as partial discharge levels, temperature, and oil quality—and use data analysis algorithms to assess the health status of the equipment, enabling early fault warnings and precise l
Echo
07/16/2025
What are the impacts of temperature on AIS voltage transformers?
What are the impacts of temperature on AIS voltage transformers?
Impact on Insulation PerformanceChanges in Insulating Material Properties: AIS voltage transformers rely on air as the insulating medium, and they also contain some solid insulating materials, such as insulating paper and insulating bushings. When the temperature rises, the migration and evaporation of moisture in solid insulating materials like insulating paper will accelerate, resulting in a decrease in the electrical strength of the insulating materials and an increased risk of insulation bre
Echo
07/15/2025
How is the application and development of AIS voltage transformers in 66kV outdoor substations?
How is the application and development of AIS voltage transformers in 66kV outdoor substations?
Hey everyone! I’m Echo, and today we’re diving into the application and development of Air Insulated Switchgear (AIS) voltage transformers in 66kV outdoor substations. These devices play a crucial role in power systems, not just for measurement but also for protection and control. As technology advances, they continue to evolve to meet higher performance demands and stricter environmental standards. Let’s take a closer look!ApplicationsVoltage MeasurementOne of the primary task
Echo
07/15/2025
Fault Analysis and Diagnosis on Current Transformer
Fault Analysis and Diagnosis on Current Transformer
Current transformers are numerous in substations and are key equipment to ensure the normal operation of the system. If a current transformer fails, it will cause the circuit breaker to trip and may even evolve into a power outage event, which will have an adverse impact on the safe and stable operation of the power grid. Taking an event of the main transformer differential protection operation caused by the failure of the current transformer on the low-voltage side of the main transformer in a
Felix Spark
07/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!