Voltaic Cell Basic Construction and Working of Voltaic Cell

Electrical4u
03/15/2024

A simple voltaic cell is made by immersing one zinc plate and one copper plate inside a water diluted sulfuric acid solution. As shown in the figure, if the copper plate and zinc plate are connected externally with an electrical load, an electric current starts flowing from copper plate to zinc plate through the load. That means there is some electrical potential difference developed between the copper plate and the zinc plate. As the current flows from copper to zinc, it is obvious that the copper plate becomes positively charged and the zinc plate becomes negatively charged.

Voltaic Cell Working

Voltaic Cell

The working principle of voltaic cell depends upon the principle that, whenever two dissimilar metals are immersed inside an electrolyte solution, the more reactive metal will have a tendency to dissolve in the electrolyte as positive metal ions, leaving electrons behind on the metal plate. This phenomenon makes the more reactive metal plate negatively charged.

Less reactive metal will attract positive ions present in the electrolyte, and hence these positive ions get deposited on the plate making the plate positively charged. Here in this case of simple voltaic cell, the zinc comes out in the sulfuric acid solution as positive ion and then reacts with negative SO4 − − ion of the solution and forms zinc sulfate (ZnSO4). As the copper is less reactive metal, the positive hydrogen ions of the sulfuric acid solution have a tendency to get deposited on the copper plate. More zinc ions coming out in the solution means more number of electrons leave in the zinc plate. These electrons then pass through the external conductor connected between zinc and copper plates.

On reaching on the copper plate, these electrons then combine with the hydrogen atoms deposited on the plate and form neutral hydrogen atoms. These atoms then combine in pairs to form molecules of hydrogen gas and the gas lastly comes up along the copper plate in form of hydrogen bubbles. The chemical action taking place inside the voltaic cell is as follows,

However, this action stops when the contact potential between Zn and dilute sulfuric acid reaches the value of 0.62 Volt. During operation of a voltaic cell, the zinc late is at a lower potential with respect of the solution film adjacent to it as shown in the figure below.

Characteristics of Voltaic Cell

Similarly, when Cu plate is placed in contact with the electrolyte, then the positive hydrogen ions in the solution have a tendency to get deposited on it until its potential rises nearly to 0.46 V above that solution. Hence, the electrical potential difference developed in a voltaic cell is 0.62 − (− 0.46) = 1.08 Volts.

In a simple voltaic cell there are mainly two drawbacks, referred as
polarization and local action.

Polarization of Voltaic Cell

It is observed that in this cell, the current gradually gets reduced and after a certain time of its operation, the current may cease altogether. This decrease in current is due to the deposition of hydrogen on the copper plate. Although the hydrogen comes out from the cell in form of bubbles, still there is a formation of a thin layer of hydrogen on the plate surface. This layer acts as an electrical insulation, thereby increase the internal resistance of the cell. Because of this insulating layer, further hydrogen ions cannot get electrons from the copper plate and get deposited in ion form. This layer of positive hydrogen ions on the copper plate exerts a repulsive force on other hydrogen ions which are approaching the copper plate. Hence the current gets reduced. This phenomenon is known as polarization.

Local Action of Voltaic Cell

It is found that even when the voltaic cell is not supplying any current, zinc continuously gets dissolved in the electrolyte. This is due to the fact that some traces of impurities like iron and lead in commercial zinc form tiny local cells which are short-circuited by the main body of zinc. The action of these parasitic cells cannot be controlled so that there is some wastage of zinc. This phenomenon is known as local action.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
Photovoltaic or Solar Cell
Photovoltaic or Solar Cell
DefinitionA photovoltaic (PV) cell is a semiconductor device that converts light into electrical energy. The voltage induced by the PV cell depends on the intensity of the incident light. The term "photovoltaic" originates from its capability to generate voltage ("voltaic") through light ("photo").In semiconductor materials, electrons are bound by covalent bonds. Electromagnetic radiation consists of tiny energy particles called photons. When photons strike the semiconductor material, electrons
Edwiin
05/16/2025
How to Wire Solar Panel & Batteries in Parallel for 12V System
How to Wire Solar Panel & Batteries in Parallel for 12V System
12V Solar Panel and Battery Parallel Wiring for Power SystemsA 12V connection is the most prevalent setup for wiring solar panels to batteries. Typically, to convert this 12VDC power into a 120/230VAC system suitable for common household use, both the photovoltaic (PV) panels and batteries are connected in parallel. This configuration enables efficient power generation, battery charging, and powering of AC loads, as well as directly operating DC - powered appliances. Let's explore the step - by
Encyclopedia
05/07/2025
Lead-Acid Battery Charging Methods
Lead-Acid Battery Charging Methods
Lead - Acid Batteries: Energy Conversion and Charging MethodsA lead - acid battery serves as a storage medium for chemical energy, which can be converted into electrical energy whenever needed. The process of transforming chemical energy into electrical energy is referred to as charging, while the reverse process, where electrical power is converted back into chemical energy, is known as discharging. During the charging phase, an electric current flows through the battery, driven by the underlyi
Encyclopedia
05/04/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!