Phasor Method for Solving Parallel Circuits

05/30/2025

When dealing with parallel circuits, multiple branches are connected in parallel. Each branch contains components such as resistors, inductors, and capacitors, forming a series circuit within that branch. Each branch is first analyzed separately as a series circuit, and then the effects of all branches are combined.
In circuit calculations, both the magnitude and phase angle of current and voltage are taken into account. When solving the circuit, the magnitudes and phase angles of voltages and currents are considered. There are mainly three methods for solving parallel AC circuits, as follows:
  • Phasor Method (or Vector Method)
  • Admittance Method
  • Phasor Algebra Method (also known as Symbolic Method or J Method)
The method that provides a quick result is typically chosen. In this article, the Phasor Method will be explained in detail.
Steps to Solve Parallel Circuits Using the Phasor Method
Consider the following circuit diagram to solve the circuit step - by - step.
Step 1 – Draw the Circuit Diagram
First, sketch the circuit diagram according to the problem. Take the above circuit as an example, which features two parallel branches:
  • Branch 1: Resistance (R) and inductance (L) in series
  • Branch 2: Resistance (R) and capacitance (C) in series
    The supply voltage is denoted as V volts.
Step 2 – Calculate Impedance for Each Branch
Determine the impedance of each branch separately:
Step 3 – Determine the magnitude of current and phase angle with the voltage in each branch.
Here,
  • ϕ1 is a lagging angle, indicating an inductive load.
  • ϕ2 is a leading angle, characteristic of a capacitive load.
Step 4 – Construct the Phasor Diagram
Take the supply voltage as the reference phasor and draw the phasor diagram, plotting the branch currents as shown below:
Step 5 – Compute the Phasor Sum of Branch Currents
Calculate the phasor sum of the branch currents using the component method:
And therefore, current I will be
Step 6 – Find the phase angle ϕ between the total current I and the circuit voltage V.

Here angle ϕ will be lagging as Iyy is negative

The power factor of the circuit will be Cosϕ or

This is all about the phasor method of solving parallel circuits.

Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!