Effect of Load on a Synchronous Motor

04/21/2025

A synchronous motor operates at a constant synchronous speed, irrespective of the load. Now, let's examine the impact of load variation on the motor. Suppose a synchronous motor is initially running with a leading power factor. The phasor diagram corresponding to the leading power factor is presented as follows:

When the load on the shaft is increased, the rotor experiences a momentary slowdown. This occurs because it takes some time for the motor to draw the additional power from the electrical line. In other words, although the rotor maintains its synchronous rotational speed, it effectively "slips back" in spatial position due to the increased load demand. During this process, the torque angle δ expands, which in turn causes the induced torque to increase.
The equation for the induced torque is expressed as follows:
Subsequently, the increased torque accelerates the rotor, enabling the motor to once again achieve synchronous speed. However, this restoration occurs with a larger torque angle δ. The excitation voltage Ef is directly proportional to ϕω, relying on both the field current and the motor's rotational speed. Given that the motor operates at a constant synchronous speed and the field current remains unchanged, the magnitude of the voltage |Ef| stays constant. Therefore, we can conclude that
 
From the equations above, it becomes evident that when the power P increases, the values of Ef sinδ and Iacosϕ also rise accordingly.The following figure illustrates the impact of a load increase on the operation of a synchronous motor.
 
As depicted in the figure above, as the load increases, the quantity jIaXs steadily grows, and the equation V=Ef+jIaX
remains valid. Concurrently, the armature current also rises. The power factor angle undergoes a transformation with the load variation; it gradually becomes less leading and then increasingly lagging, as clearly illustrated in the figure.
In summary, when the load on a synchronous motor increases, the following key observations can be made:
  • The motor maintains its operation at the synchronous speed.
  • The torque angle δ expands.
  • The excitation voltage Ef​ stays constant.
  • The armature current Ia drawn from the power supply increases.
  • The phase angle ϕ shifts further in the lagging direction.
It's important to note that there is a limit to the mechanical load that a synchronous motor can handle. As the load continues to rise, the torque angle δ keeps increasing until a critical point is reached. At this juncture, the rotor is pulled out of synchronism, causing the motor to come to a halt.
The pull - out torque is defined as the maximum torque that a synchronous motor can generate at the rated voltage and frequency while still maintaining synchronism. Typically, its values range from 1.5 to 3.5 times the full - load torque.

Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!