• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


How do electricity electric current electrons move in wires, cables, and metals?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

The movement of current in wires, cables, and metals is a fundamental physical phenomenon that involves the motion of electrons and the properties of conductive materials. Here is a detailed explanation of this process:

1. Concept of Free Electrons

In metals and conductive materials, there are a large number of free electrons. These free electrons are not bound to atomic nuclei and can move freely within the material. The presence of free electrons is the primary reason why metals are good conductors of electricity.

2. Effect of an External Electric Field

When a voltage (i.e., an external electric field) is applied across a conductive material, the free electrons are influenced by the electric field and begin to move directionally. The direction of the electric field determines the direction of electron movement. Typically, the electric field points from the positive terminal to the negative terminal, and electrons move in the opposite direction, from the negative terminal to the positive terminal.

3. Directed Movement of Electrons

Under the influence of the electric field, free electrons start to move directionally, forming a current. The direction of the current is defined as the direction of positive charge movement, which is opposite to the actual direction of electron movement. Therefore, when we say current flows from positive to negative, it actually means that electrons are moving from negative to positive.

4. Interaction with the Lattice

During their movement, free electrons collide with the lattice (atomic arrangement) of the material. These collisions scatter the electrons, changing their direction of movement and reducing their average velocity. This scattering effect is one of the sources of resistance.

5. Current Density

Current density (J) is the current per unit cross-sectional area and can be expressed by the formula:

J= I/A

where I is the current and A is the cross-sectional area of the conductor.

6. Ohm's Law

Ohm's Law describes the relationship between current, voltage, and resistance:

V=IR

where V is the voltage, I is the current, and R is the resistance.

7. Properties of Conductive Materials

Different conductive materials have varying conductive properties, which depend on their electronic structure and lattice structure. For example, copper and silver are excellent conductors because they have a large number of free electrons and low resistivity.

8. Effect of Temperature

Temperature has a significant impact on conductivity. Generally, as temperature increases, lattice vibrations in the material intensify, increasing the frequency of electron-lattice collisions and leading to higher resistance. This is why the resistance of conductors increases at higher temperatures.

9. Superconductivity

Under certain specific conditions, some materials can enter a superconducting state, where resistance drops to zero, allowing current to flow without any loss. Superconductivity typically occurs at very low temperatures, but recent research has discovered some high-temperature superconducting materials.

Summary

The movement of current in wires, cables, and metals is driven by the directed movement of free electrons under the influence of an external electric field. Electron interactions with the material's lattice cause resistance. The properties of conductive materials, temperature, and other factors all influence the efficiency of current transmission. Understanding these basic principles helps in better designing and applying conductive materials and circuits.

Give a tip and encourage the author!
Recommended
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
1. On a scorching sunny day, do damaged vulnerable components need to be replaced immediately?Immediate replacement is not recommended. If replacement is necessary, it is advisable to do so in the early morning or late afternoon. You should contact the power station’s operation and maintenance (O&M) personnel promptly, and have professional staff go to the site for replacement.2. To prevent photovoltaic (PV) modules from being hit by heavy objects, can wire mesh protective screens be install
Encyclopedia
09/06/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
1. What are the common faults of distributed photovoltaic (PV) power generation systems? What typical problems may occur in various components of the system?Common faults include inverters failing to operate or start due to voltage not reaching the startup set value, and low power generation caused by issues with PV modules or inverters. Typical problems that may occur in system components are burnout of junction boxes and local burnout of PV modules.2. How to handle common faults of distributed
Leon
09/06/2025
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
Edwiin
08/28/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.