• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Application of Reactors in Long-Distance Transmission Grids: Reactive Power Compensation and Overvoltage Suppression Solutions

Rockwill
17yrs 700++ staff 108000m²+m² US$0+ China

Application Scenario:
Excessive capacitive charging power in long-distance transmission lines of 500kV substations.

Problem Background:
In long-distance transmission lines rated at 500kV and above, the line-to-ground capacitance effect is significant. When operating under light load or no load, these lines generate substantial capacitive charging power (capacitive reactive power). This excessive power leads to:

  1. Power-frequency overvoltage:​ Line voltage rises significantly, potentially exceeding equipment insulation withstand levels and jeopardizing grid security.
  2. Voltage fluctuations and stability issues:​ Degrades power quality, increases line losses, and constrains line transmission capacity.
  3. System reactive power imbalance:​ Makes it difficult to maintain system voltage within qualified ranges.

To address these issues, high-performance shunt reactors must be installed at key nodes (e.g., at both ends or mid-line 500kV substations) for inductive reactive power compensation, absorbing the excess capacitive charging power.

Core Solution: BKLG-500 Shunt Reactors
For mitigating excessive charging power in 500kV long-distance lines, we recommend employing ​BKLG-500 oil-immersed shunt reactors with iron cores​ as the core solution.

Key Equipment Features and Technical Advantages:

  1. Efficient Absorption of Capacitive Reactive Power:
    • Rated Capacity: 60 Mvar. Meticulously matches long-line charging power requirements, effectively absorbing excess capacitive reactive power generated by the line.
    • Function: Balances line reactive power, confines voltage fluctuations within safe and stable ranges, and significantly suppresses power-frequency overvoltage during light/no-load conditions.
  2. Exceptional Reliability and Overload Capacity:
    • Temperature Rise Limit: 55°C (under rated conditions). Utilizes advanced insulation materials and cooling design to ensure long-term operational reliability.
    • Overload Capability: Can operate continuously for 30 minutes at ​110% of rated capacity. This design effectively withstands system short-term surges or abnormal conditions (e.g., load rejection), providing an additional safety margin for the grid and ensuring equipment security.
  3. Ultra-Low Noise and Vibration Design:
    • Special Magnetic Shunt Structure: Optimizes core magnetic circuit design, drastically reducing vibration and noise caused by core magnetostriction.
    • Guaranteed Sound Pressure Level: Operating noise ≤ 65 dB(A). This performance significantly surpasses conventional products, meeting stringent environmental requirements, making it especially suitable for substations near residential areas or noise-sensitive zones.
  4. Robust Construction and Stable Performance:
    • Iron Core Design: Offers structural robustness, high mechanical strength, strong short-circuit withstand capability, low no-load loss, and excellent capacity adjustment characteristics.
    • Oil-Immersed Cooling: High heat dissipation efficiency, superior insulation performance, easy maintenance, and proven reliable technology.

Scheme Benefits:

  • Effectively suppresses power-frequency overvoltage:​ Maintains line voltage within safe limits, protecting critical equipment like transformers, circuit breakers, and surge arresters.
  • Significantly improves voltage stability and quality:​ Balances system reactive power, reduces voltage fluctuation range, and enhances power supply reliability and quality.
  • Increases line transmission capacity:​ Reduces limitations on transmission capacity caused by excessively high voltage.
  • Enhances system operational safety margin:​ Robust overload capability copes with contingencies.
  • Meets environmental requirements:​ Low-noise design minimizes impact on surrounding environment.

Implementation Results:

  • Significant reduction in voltage fluctuations:​ Voltage fluctuation range for the associated line was successfully controlled to within ​±2%, compared to ​±8%​ pre-implementation.
  • Effective elimination of overvoltage risk:​ Power-frequency overvoltage under light load and no-load conditions was effectively limited below equipment safety thresholds.
  • Stable and reliable operation:​ The BKLG-500 reactors have operated stably since commissioning. Measured noise values are significantly lower than guaranteed levels, earning high user recognition.
07/25/2025
Recommended
Smart Meter Solution: Analysis of Core Functions and Application Scenarios
I. Solution OverviewAs a core terminal device for grid digitalization, smart meters integrate high-precision metering, bidirectional communication, and intelligent analysis to provide real-time data support for power systems.This solution, developed in accordance with international and domestic standards and integrated with advanced communication technologies, builds a secure and reliable smart metering system. It is designed to meet diverse needs across residential, commercial, industrial, and
Beyond Metering: How Smart Meters Create Multidimensional Value for the Grid, Enterprises, and Households
Amid the digital transformation of power grids and the construction of new power systems, smart meters have evolved from traditional electricity metering tools into intelligent terminal nodes integrating metering, communication, control, and analytics. This solution provides an in-depth analysis of the core functions, technical pathways, and diverse applications of smart meters, offering comprehensive value reference for various users.​I. Core Technological Foundation: High-Precision Metering an
Smart Meter Full-Scope Solution: Precise Cost Reduction and Efficiency Enhancement, Empowering Energy Digital Upgrade
Overview​With the deep integration of energy transition and the digital economy, traditional electricity management models can no longer meet the demands for precision, intelligence, and low-carbon development. This solution leverages advanced smart meters and IoT technologies to build a smart electricity management system covering various scenarios such as residential, commercial and industrial, distributed energy, and electric vehicle charging. It aims to improve energy efficiency, ensure safe
Big Data Analysis of Smart Meters: Value, Benefits, and Application Prospects
I.Introduction​​Background of Energy and Smart Grids​Since the 21st century, the increasing depletion of non-renewable energy sources and worsening ecological environmental pollution have made energy issues a critical constraint on the development of human society. As an efficient and clean secondary energy source, electricity holds a significant position in the energy structure. To meet the growing demand for electricity and adapt to the diverse requirements of power development, building a saf
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.