• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Difference between Voltage Source Inverter & Current Source Inverter

Edwiin
Field: Power switch
China

The voltage source inverter (VSI) and the current source inverter (CSI) represent two distinct categories of inverters, both designed for converting direct current (DC) to alternating current (AC). Despite their shared purpose, they exhibit notable operational differences and cater to distinct application requirements.

Power electronics centers on the study and implementation of various power converters—devices or electronic circuits that transform one form of electrical energy into another suitable for a specific load. These converters are classified into multiple types, including AC-to-AC, AC-to-DC, DC-to-AC, and DC-to-DC, each tailored to different energy conversion needs.

An inverter is a specialized power converter designed to transform direct current (DC) into alternating current (AC). The input DC features a steady, fixed voltage, while the output AC can have its amplitude and frequency tailored to specific requirements. This versatility makes inverters indispensable for generating backup power from batteries, facilitating high-voltage direct current (HVDC) transmission, and enabling variable frequency drives (VFDs) that adjust motor speeds by controlling output frequency.

An inverter serves solely to convert electrical energy from one form to another, without generating power independently. It typically consists of transistors like MOSFETs or IGBTs to facilitate this conversion.

There are two primary types of inverters: voltage source inverters (VSIs) and current source inverters (CSIs), each with distinct advantages and limitations.

Voltage Source Inverter (VSI)

A VSI is designed such that its input DC voltage remains constant, unaffected by load variations. While the input current fluctuates in response to the load, the DC source exhibits negligible internal impedance. This characteristic makes VSIs suitable for purely resistive or lightly inductive loads, including lighting systems, AC motors, and heaters.

A large capacitor is connected in parallel with the input DC source to maintain a constant voltage, ensuring minimal variation even as the input DC current adapts to load changes. VSIs typically utilize MOSFETs or IGBTs paired with feedback diodes (freewheeling diodes), which are essential for managing reactive power flow in inductive circuits.

Current Source Inverter (CSI)

In a CSI, the input DC current remains constant (referred to as the DC-link current), while the voltage fluctuates with load changes. The DC source exhibits high internal impedance, making CSIs ideal for highly inductive loads like induction motors. Compared to VSIs, CSIs offer enhanced resilience against overloading and short-circuiting, a key operational advantage in robust industrial setups.

A large inductor is connected in series with the DC source to establish a constant current source, as the inductor inherently resists changes in current flow. This design ensures that in a CSI, the input current remains stable while the voltage adapts to load variations.

CSIs typically employ thyristors in their configuration and do not require freewheeling diodes, distinguishing them from VSIs in both component design and operational mechanics.

Main Differences Between Voltage Source and Current Source Inverter

The table below outlines the key comparisons between VSIs and CSIs:

Give a tip and encourage the author!

Recommended

Main Transformer Accidents and Light Gas Operation Issues
1. Accident Record (March 19, 2019)At 16:13 on March 19, 2019, the monitoring background reported a light gas action of No. 3 main transformer. In accordance with the Code for Operation of Power Transformers (DL/T572-2010), operation and maintenance (O&M) personnel inspected the on-site condition of No. 3 main transformer.On-site confirmation: The WBH non-electrical protection panel of No. 3 main transformer reported a Phase B light gas action of the transformer body, and the reset was ineff
02/05/2026
Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.