• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Dielectric Gases

Electrical4u
Field: Basic Electrical
0
China

What Are Dielectric Gases

Dielectric materials are basically basic and pure electrical insulators. By applying a sensible electrical field, the dielectric gases can be polarised. Vacuum, Solids, Liquids and Gases can be a dielectric material. A dielectric gas is also called as an insulating gas. It is a dielectric material in gaseous state which can prevent electrical discharge. Dry air, Sulphur hexafluoride (SF6) etc are the examples of gaseous dielectric materials.
Gaseous dielectrics are not practically free of electrically charged particles. When a peripheral
electric field is applied to a gas, the free electrons are formed. These free electrons are accelerated from cathode to anode by the electric pressure applying a force on them.

When these electrons achieve adequate energy to bang off the electrons of the gas atoms or molecules and after that, the electrons are not involved by the molecules, and then the electron concentration will begin to build up exponentially. As a result, breakdown occurs. A few gases such as SF6 are strongly attached (the electrons are powerfully attached to the molecule), some are weakly attached for e.g., oxygen and some are not at all attached for e.g. N2. Examples of dielectric gases are Ammonia, Air, Carbon dioxide, Sulphur hexafluoride (SF6), Carbon Monoxide, Nitrogen, Hydrogen etc. The moisture content in dielectric gases may alter the properties to be a good dielectric.

Breakdown in Gases

Actually, it is the fall in resistance of the insulating gases. This will happen when the applied voltage increases than the breakdown voltage (dielectric strength). As a result of this, the gas will begin to conduct. That is, there will be a strong voltage rise in a small area in the gas. This area of strong voltage rise is the reason of partial ionisation of nearby gas and starts conduction. This is made intentionally in low pressure discharges (in an electrostatic precipitator or in fluorescent lights).

The Paschen’s law approximated the voltage which causes electrical breakdown (V = f(pd)). It is actually an equation which explains the breakdown voltage as the function of product of pressure and gap length. In that a curve is obtained, this is called Paschen’s curve. The Paschen’s curve for air and argon is represented in figure 1.
Here, as pressure is decreased, the breakdown voltage also reduced and then gradually increases which exceeds the original value. At standard pressure, the breakdown voltage reduces with the gap length up to a point.

When the gap length is reduced beyond that point, then the breakdown voltage start to increase and exceeds its original value. At high pressure and increased gap length condition, the breakdown voltage is more or less proportional to the product of the two. This is roughly proportional because of electrode effects (microscopic irregularity of electrodes may cause breakdown). The breakdown voltage of dielectric gases is also roughly proportional to density.
dielectric gases

Breakdown Mechanism

The mechanism of breakdown will directly depend on the nature of the dielectric gases and the electrode polarity in which the breakdown begins. If breakdown begins at cathode, then the supply of initiatory electrons is by the electrode itself. Then the electrons will get accelerates, numerous electrons formation occurs and it results in breakdown. If breakdown begins at anode, then the supply of initiatory electrons is by the gas itself. For e.g. air and SF6 gas. A tiny sharp point in a gas may also be the reason of breakdown of gas gap. This happens as a result of step-by-step breakdown processes. Corona formation (i.e. corona discharge) can be related to this. It is actually a short energy release (discharge) and it results in feebly ionized gas channels. When the field is too high, one of these channels will conduct.

Properties of Dielectric Gases

The preferred properties of an excellent gaseous dielectric material are as follows

  • Utmost dielectric strength.

  • Fine heat transfer.

  • Incombustible.

  • Chemical idleness against the construction material used.

  • Inertness.

  • Environmentally non poisonous.

  • Small temperature of condensation.

  • High thermal constancy.

  • Acquirable at low cost

Application of Dielectric Gases

It is used in Transformer, Radar waveguides, Circuit Breakers, Switchgears, High Voltage Switching, Coolants. They are usually used in high voltage application.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
Edwiin
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Related Products
  • 11kV 12kV 35kVSF6 gas-insulated box-type Ring Main Unit/closed switchgear
  • Solid insulated switchgear/Ring Main Unit
  • IEEE Rear Connector With Surge Arrester
  • 3.6kV-24kV Indoor metal-clad withdrawable switchgear MV Switchgear
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.