• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


د ریزنما کاتودي | CRO

Electrical4u
ميدان: Electrical Basics
0
China

چه چیزی است آسیاب کاتدی نوری

چه چیزی است آسیاب کاتدی نوری

آسیاب کاتدی نوری (CRO) یک دستگاه است که معمولاً در آزمایشگاه برای نمایش، اندازه‌گیری و تحلیل انواع مختلف امواج مدارهای الکتریکی استفاده می‌شود. آسیاب کاتدی نوری یک طرح‌ریز بسیار سریع X-Y است که می‌تواند سیگنال ورودی را در مقابل زمان یا سیگنال دیگری نمایش دهد.

آسیاب‌های کاتدی نوری از نقطه‌های روشن استفاده می‌کنند که با ضربه به پرتو الکترون‌ها تولید می‌شوند و این نقطه روشن در پاسخ به تغییرات در کمیت ورودی حرکت می‌کند. در این لحظه یک سوال در ذهن ما باید مطرح شود که چرا فقط از پرتو الکترون استفاده می‌کنیم؟ علت این است که تأثیرات کم پرتو الکترون‌ها که می‌تواند برای دنبال کردن تغییرات در مقادیر لحظه‌ای کمیت‌های تغییر پذیر سریع استفاده شود. فرم‌های عمومی آسیاب کاتدی نوری بر ولتاژ عمل می‌کنند.

بنابراین کمیت ورودی که در بالا صحبت کردیم ولتاژ است. امروزه با کمک انتقال‌دهنده‌ها ممکن است انواع مختلف کمیت‌های فیزیکی مانند جریان، فشار، شتاب و غیره به ولتاژ تبدیل شوند و بنابراین به ما اجازه می‌دهد تا نمایش‌های بصری از این کمیت‌های مختلف را در آسیاب کاتدی نوری داشته باشیم. حال بیایید به جزئیات ساختاری آسیاب کاتدی نوری نگاهی بیندازیم.

ساختار آسیاب کاتدی نوری

بخش اصلی آسیاب کاتدی نوری لوله کاتدی نوری است که همچنین به عنوان قلب آسیاب کاتدی نوری شناخته می‌شود.
ساختار داخلی لوله کاتدی نوری

بیایید ساختار لوله کاتدی نوری را برای درک ساختار آسیاب کاتدی نوری بحث کنیم. به طور کلی لوله کاتدی نوری شامل پنج بخش اصلی است:

  1. تفنگ الکترون

  2. سیستم صفحه تغییر مسیر

  3. صفحه نورانی

  4. پوشش شیشه‌ای

  5. پایه

شما به تمام این ۵ مولفه برای ساخت آسیاب کاتدی نوری خودساخته نیاز دارید. حالا این ۵ مولفه را به طور دقیق بحث خواهیم کرد:

تفنگ الکترون:
این منبع پرتوی الکترون‌های شتاب‌دار، انرژی‌دار و متمرکز است. این شامل شش بخش است: گرم‌کننده، کاتد، شبکه، آند پیش‌شتاب، آند تمرکز و آند شتاب. برای بدست آوردن تابش بالای الکترون‌ها، لایه اکسید باریوم (که در انتهای کاتد توده‌ای شده) به صورت غیرمستقیم در دمای متوسط گرم می‌شود. الکترون‌ها بعد از این از طریق یک سوراخ کوچک به نام شبکه کنترل که از نیکل ساخته شده عبور می‌کنند. همانطور که از نام آن مشخص است، شبکه کنترل با بایاس منفی خود، تعداد الکترون‌ها یا به عبارت دیگر شدت الکترون‌های تابش‌یافته از کاتد را کنترل می‌کند. بعد از عبور از شبکه کنترل، این الکترون‌ها با استفاده از آند پیش‌شتاب و آند شتاب شتاب می‌یابند. آند پیش‌شتاب و آند شتاب به یک پتانسیل مثبت مشترک ۱۵۰۰ ولت متصل شده‌اند.

حالا بعد از این، وظیفه آند تمرکز تمرکز پرتو الکترون‌های تولید شده است. آند تمرکز به یک ولتاژ قابل تنظیم ۵۰۰ ولت متصل شده است. حالا دو روش برای تمرکز پرتو الکترون وجود دارد و در زیر ذکر شده‌اند:

  1. تمرکز الکترواستاتیک

  2. تمرکز الکترومغناطیسی

در اینجا ما روش تمرکز الکترواستاتیک را به طور دقیق بحث خواهیم کرد.

تمرکز الکترواستاتیک
ما می‌دانیم که نیروی وارد بر یک الکترون با -qE داده می‌شود، که q شارژ الکترون (q = ۱.۶ × ۱۰-19 C)، E شدت
میدان الکتریکی است و علامت منفی نشان می‌دهد که جهت نیرو در خلاف جهت میدان الکتریکی است. حالا ما این نیرو را برای تغییر مسیر پرتو الکترون‌های خروجی از تفنگ الکترون استفاده می‌کنیم. بیایید دو حالت را در نظر بگیریم:

حالت اول
در این حالت ما دو صفحه A و B داریم که در شکل نشان داده شده است.
میدان الکتریکی بین صفحات موازی
صفحه A در پتانسیل +E است در حالی که صفحه B در پتانسیل –E است. جهت میدان الکتریکی از صفحه A به صفحه B و در زاویه قائمه با سطوح صفحات است. سطوح هم‌پتانسیل نیز در نمودار نشان داده شده‌اند که عمود بر جهت میدان الکتریکی هستند. وقتی پرتو الکترون از این سیستم صفحات عبور می‌کند، در خلاف جهت میدان الکتریکی تغییر مسیر می‌یابد. زاویه تغییر مسیر می‌تواند با تغییر پتانسیل صفحات به راحتی تغییر کند.

حالت دوم
در اینجا ما دو استوانه همنشین با
اختلاف پتانسیل بین آنها داریم که در شکل نشان داده شده است.
میدان بین دو استوانه همنشین
جهت نتیجه‌ای میدان الکتریکی و سطوح هم‌پتانسیل نیز در شکل نشان داده شده‌اند. سطوح هم‌پتانسیل با خط‌های نقطه‌خط نشان داده شده‌اند که شکل منحنی دارند. حالا ما علاقه‌مند به محاسبه زاویه تغییر مسیر پرتو الکترون هنگامی که از این سطح هم‌پتانسیل منحنی عبور می‌کند هستیم. بیایید سطح هم‌پتانسیل S را در نظر بگیریم. پتانسیل در سمت راست سطح +E است در حالی که پتانسیل در سمت چپ سطح –E است. وقتی پرتو الکترون با زاویه A به عمود وارد می‌شود، پس از عبور از سطح S با زاویه B تغییر مسیر می‌یابد، همانطور که در شکل زیر نشان داده شده است. مولفه عمودی سرعت پرتو با توجه به نیروی وارد شده در جهت عمودی به سطح افزایش می‌یابد. این بدان معناست که سرعت‌های مماسی ثابت می‌مانند، بنابراین با تساوی مولفه‌های مماسی داریم V1sin(A) = V2sin(B)، که V1 سرعت اولیه الکترون‌ها و V2 سرعت پس از عبور از سطح است. حالا داریم sin(A)/sin(B)=V2 / V1.
از معادله بالا می‌توانیم ببینیم که پرتو الکترون پس از عبور از سطح هم‌پتانسیل خم می‌شود. بنابراین این سیستم نیز به عنوان سیستم تمرکز شناخته می‌شود.

تغییر مسیر الکترواستاتیک
برای یافتن عبارت تغییر مسیر، بیایید یک سیستم را در نظر بگیریم:
تغییر مسیر الکترواستاتیک
انحراف پرتو الکترون
در سیستم فوق دو صفحه A و B داریم که به ترتیب در پتانسیل +E و 0 هستند. این صفحات همچنین به عنوان صفحات تغییر مسیر شناخته می‌شوند. میدان تولید شده توسط این صفحات در جهت محور y مثبت است و نیرویی در جهت محور x وجود ندارد. بعد از صفحات تغییر مسیر، صفحه‌ای داریم که می‌توانیم با استفاده از آن انحراف کل پرتو الکترون را اندازه‌گیری کنیم. حالا بیایید یک پرتو الکترون که در جهت محور x حرکت می‌کند در نظر بگیریم. پرتو به زاویه A به دلیل وجود میدان الکتریکی تغییر مسیر می‌یابد و تغییر مسیر در جهت مثبت محور y است، همانطور که در شکل نشان داده شده است. حالا بیایید عبارتی برای تغییر مسیر این پرتو بدست آوریم. با استفاده از حفظ انرژی، ما داریم که از دست دادن انرژی پتانسیلی هنگامی که الکترون از کاتد به آند شتاب حرکت می‌کند برابر با افزایش انرژی جنبشی الکترون است. ریاضیا می‌توانیم بنویسیم،

که e شارژ الکترون،
E
اختلاف پتانسیل بین دو صفحه،
m جرم الکترون،
و v سرعت الکترون است.
بنابراین، eE از دست دادن انرژی پتانسیلی و ۱/۲mv1/2 افزایش انرژی جنبشی است.
از معادله (1) داریم v = (2eE/m)1/2.
حالا ما
میدان الکتریکی با شدت E/d در جهت محور y داریم، بنابراین نیروی وارد شده در جهت y برابر است با F = eE/d که d فاصله بین دو صفحه تغییر مسیر است.
به دلیل این نیرو، الکترون در جهت y تغییر مسیر می‌یابد و فرض کنید تغییر مسیر در جهت y برابر D است که در صفحه نمایش داده شده است. به دلیل نیروی F، شتاب صعودی خالص الکترون در جهت y مثبت است و این شتاب برابر است با Ee/(d × m). چون سرعت اولیه در جهت y مثبت صفر است، بنابراین با استفاده از معادلات حرکت می‌توانیم عبارت تغییر مکان در جهت y را به صورت زیر بنویسیم،
<

نوروغ و مصنف ته هڅودئ!
پیشنهاد شده
استوالي چاپ کول
بارگیری
دریافت برنامه کاربردی IEE-Business
از برنامه IEE-Business برای پیدا کردن تجهیزات دریافت راه حل ها ارتباط با متخصصین و شرکت در همکاری صنعتی هر زمان و مکان استفاده کنید که به طور کامل توسعه پروژه های برق و کسب و کار شما را حمایت می کند