• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Capacitance Meter

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What Is A Capacitance Meter

A capacitance meter is a piece of electronic test equipment whose purpose is to measure capacitance, mostly of discrete capacitors. The capacitance meter works based off of the directly proportional relationship between capacitance and a time constant.

This relation is used in this method of measurement. So, we can first go through a simple RC circuit with a supply voltage of VIN (shown below).

capacitance meter
During the charging period of the capacitor, the voltage across the capacitor at any instant is

The time needed to charge the capacitor to exactly 63.5 percent of the total input voltage.
is termed as time constant. It is denoted by ‘τ’.

Now, Assume a capacitor which is charged using a constant current source and the capacitor gets discharged through a resistor having a fixed resistance. To measure the capacitance of this circuit, we can implement a 555 timer together with a few digital test apparatus. The clear way of measuring the capacitance is by measuring the time period of oscillations. The reading can be obtained directly in nanofarads or microfarads by selecting the exact size of the charging resistance.

capacitance meter
When compared to other capacitance measuring techniques, this meter is capable to hold electrolytic which is up to tens of thousands of Farad.

If the testing capacitor has any leakage, this method will create the value of the capacitance to be smaller than the actual value. This method is also an efficient indicator of the behavior of the test capacitor in the majority bypass and timing circuits. The block diagram of a basic digital capacitance meter with the 555 timer IC is shown below.
capacitance meter
Here, we can see a 555 timer in the circuit. It works as an astable multivibrator. The frequency of this multivibrator is governed by the unknown capacitance value (CX). The output of this multivibrator is connected to a digital counter. This counter can measure the length of the cycle of the square wave.
Cycle length of the square wave which is formed by 555 timers can be calculated using the formula:

On the peak value of the charging curve, a digital counter will get reset. At this time, a clock of 100 kHz pulses is made ON and it is routed to the counter. Next, after the completion of discharge part of the cycle, the display will get updated and we can simply read out the value of the capacitor. To get the direct display of the capacitance value simply and correctly, the selection of charging currents and reference frequency should be apt.

The shielding of leads should be made assure and for low capacity measurements, it should be kept short. This is because the hum of 50 Hz can result in some minor instability.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
PT Fuse Slow Blow: Causes, Detection & Prevention
PT Fuse Slow Blow: Causes, Detection & Prevention
I. Fuse Structure and Root Cause AnalysisSlow Fuse Blowing:From the design principle of fuses, when a large fault current passes through the fuse element, due to the metal effect (certain refractory metals become fusible under specific alloy conditions), the fuse first melts at the soldered tin ball. The arc then rapidly vaporizes the entire fuse element. The resulting arc is quickly extinguished by quartz sand.However, due to harsh operating environments, the fuse element may age under the comb
Edwiin
10/24/2025
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Common Causes of Fuse BlowingCommon reasons for fuse blowing include voltage fluctuations, short circuits, lightning strikes during storms, and current overloads. These conditions can easily cause the fuse element to melt.A fuse is an electrical device that interrupts the circuit by melting its fusible element due to heat generated when current exceeds a specified value. It operates on the principle that, after an overcurrent persists for a certain period, the heat produced by the current melts
Echo
10/24/2025
Fuse Maintenance & Replacement: Safety and Best Practices
Fuse Maintenance & Replacement: Safety and Best Practices
1. Fuse MaintenanceFuses in service should be regularly inspected. The inspection includes the following items: Load current should be compatible with the rated current of the fuse element. For fuses equipped with a fuse blown indicator, check whether the indicator has actuated. Check the conductors, connection points, and the fuse itself for overheating; ensure connections are tight and making good contact. Inspect the fuse exterior for cracks, contamination, or signs of arcing/discharge. Liste
James
10/24/2025
Maintenance and Repair Items for 10kV High-Voltage Switchgear
Maintenance and Repair Items for 10kV High-Voltage Switchgear
I. Routine Maintenance and Inspection(1) Visual Inspection of Switchgear Enclosure No deformation or physical damage to the enclosure. Protective paint coating shows no severe rust, peeling, or flaking. Cabinet is securely installed, clean on the surface, and free of foreign objects. Nameplates and identification labels are neatly affixed and not falling off.(2) Check of Switchgear Operating Parameters Instruments and meters indicate normal values (comparable to typical operating data, with no s
Edwiin
10/24/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.