• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Weston Type Frequency Meter

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What Is Weston Type Frequency Meter

The main principle of working of weston type frequency meter is that “when an current flows through the two coils which are perpendicular to each other, due to these currents some magnetic fields will produce and thus the magnetic needle will deflects towards the stronger magnetic field showing the measurement of frequency on the meter”. Construction of weston frequency is as compared to ferrodynamic type of frequency meter. In order to construct a circuit diagram we need two coils, three inductors and two resistors.

Given below is the circuit diagram for the weston type frequency meter.
weston type frequency meter

Axis of both coils are marked as shown. Scale of the meter is calibrated such that at standard frequency the pointer will take position at 45o. Coil 1 contains a series resistor marked R1 and reactance coil marked as L1, while the coil 2 has a series reactance coil marked as L2 and parallel resistor marked as R2. The indcuctor which is marked as L0 is connected in series with the supply voltage in order to reduce the higher harmonic means here this inductor is working as a filter circuit. Let us look at the working of this meter.

Now when we apply voltage at standard frequency then the pointer will take normal position, if there increase the frequency of the applied voltage then we will see that the pointer will moves towards left marked as higher side as shown in the circuit diagram. Again we reduce the frequency the pointer will start moving towards the right side, if lower the frequency below the normal frequency then it cross the normal position to move towards left side marked lower side as shown in the figure.

Now let us look at the internal working of this meter. Voltage drop across an inductor is directly proportion to frequency of the source voltage, as we increase the frequency of the applied voltage the voltage drop across the inductor L1 increase that means the voltage impressed between the coil 1 is increased hence the current through the coil 1 increase while the current through the coil 2 decreases.
Since the current through the coil 1 increases the magnetic field also increases and the magnetic needle attracts more towards the left side showing the increment in the frequency. Similar action will takes if decrease the frequency but in this the pointer will moves towards the left side.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
PT Fuse Slow Blow: Causes, Detection & Prevention
PT Fuse Slow Blow: Causes, Detection & Prevention
I. Fuse Structure and Root Cause AnalysisSlow Fuse Blowing:From the design principle of fuses, when a large fault current passes through the fuse element, due to the metal effect (certain refractory metals become fusible under specific alloy conditions), the fuse first melts at the soldered tin ball. The arc then rapidly vaporizes the entire fuse element. The resulting arc is quickly extinguished by quartz sand.However, due to harsh operating environments, the fuse element may age under the comb
Edwiin
10/24/2025
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Common Causes of Fuse BlowingCommon reasons for fuse blowing include voltage fluctuations, short circuits, lightning strikes during storms, and current overloads. These conditions can easily cause the fuse element to melt.A fuse is an electrical device that interrupts the circuit by melting its fusible element due to heat generated when current exceeds a specified value. It operates on the principle that, after an overcurrent persists for a certain period, the heat produced by the current melts
Echo
10/24/2025
Fuse Maintenance & Replacement: Safety and Best Practices
Fuse Maintenance & Replacement: Safety and Best Practices
1. Fuse MaintenanceFuses in service should be regularly inspected. The inspection includes the following items: Load current should be compatible with the rated current of the fuse element. For fuses equipped with a fuse blown indicator, check whether the indicator has actuated. Check the conductors, connection points, and the fuse itself for overheating; ensure connections are tight and making good contact. Inspect the fuse exterior for cracks, contamination, or signs of arcing/discharge. Liste
James
10/24/2025
Maintenance and Repair Items for 10kV High-Voltage Switchgear
Maintenance and Repair Items for 10kV High-Voltage Switchgear
I. Routine Maintenance and Inspection(1) Visual Inspection of Switchgear Enclosure No deformation or physical damage to the enclosure. Protective paint coating shows no severe rust, peeling, or flaking. Cabinet is securely installed, clean on the surface, and free of foreign objects. Nameplates and identification labels are neatly affixed and not falling off.(2) Check of Switchgear Operating Parameters Instruments and meters indicate normal values (comparable to typical operating data, with no s
Edwiin
10/24/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.