• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


SG10 Series Transformer Overload Protection Solution | Prevent Overheating and Damage, View Now

Rockwell
Rockwell
Field: Manufacturing
China

Operating Conditions in National Standard GB 6450-1986

Ambient temperature:

  • Maximum ambient temperature: +40°C

  • Daily average maximum temperature: +30°C

  • Annual average maximum temperature: +20°C

  • Minimum temperature: -30°C (outdoor); -5°C (indoor)

  • Horizontal axis: Product load;

  • Vertical axis: Average coil temperature rise in Kelvin (note: not in Celsius).

For Class H insulation products, the long-term temperature resistance of insulation materials is stipulated by the state as 180°C. However, the insulation materials used in CEEG’s SG (B) series transformer products include NOMEX paper (Class C, 220°C) and insulation coatings (Class H, 180°C or Class C, 220°C), which provide a large margin for product overload.

Examples

  • a. When the transformer operates at 70% load, its average coil temperature rise is 57K. If the ambient temperature is 25°C, the average temperature of the coil is calculated as:

  • T = Coil temperature rise + Ambient temperature = 57 + 25 = 82°C.

  • b. When the transformer operates at 120% load with an ambient temperature of 40°C, the average temperature of the coil is calculated as:

  • T = 133 + 40 = 173°C (which is lower than 200°C). The local hot spot temperature inside the coil is 185°C (173 × 1.07).

Note

SG (B) series transformers can achieve 120% load without fans; with fan cooling, they can handle short-term overloads of more than 50%. Although long-term overload operation is not recommended, this indicates that SG10 products have the capability to provide additional load in emergency situations, and also proves that the products have a sufficiently long service life under rated load conditions, reducing long-term investment costs.

Producing Class H (180°C) products using Class C (220°C) insulation materials is far superior to Japanese epoxy resin products (which are produced using Class F (155°C) materials and have no overload margin).

Sufficient overload capacity can withstand severe electric field interference and ensure stable power supply. This makes SG10 transformers highly reliable equipment, suitable for locations with unstable power supply, industries with high overload requirements, and industries with strict power stability requirements. Examples include the glass industry, iron and steel industry, automobile manufacturing, commercial buildings, microelectronics industry, cement industry, water treatment and pump stations, petrochemical industry, hospitals, and data centers.

Key Term Explanations

  • Class H/C/F insulation: Standard classifications for insulation materials in electrical equipment, defined by their maximum long-term allowable operating temperatures (Class H: 180°C, Class C: 220°C, Class F: 155°C), in line with international insulation classification norms.

  • Temperature rise in Kelvin (K): A unit of temperature difference where 1K = 1°C; using Kelvin for temperature rise avoids confusion with absolute temperature in Celsius, which is a common practice in electrical engineering.

  • NOMEX paper: A high-temperature resistant insulation paper (Class C) widely used in transformers, known for excellent thermal stability and dielectric properties.

Give a tip and encourage the author!
Recommended
Toroidal vs Square Transformers: Key Differences
Toroidal vs Square Transformers: Key Differences
What Is a Toroidal Transformer?A toroidal transformer is a major type of electronic transformer that has been widely used in household appliances and other electronic equipment with higher technical requirements. Its primary applications are as a power transformer and an isolation transformer. Abroad, toroidal transformers are already available in complete series and are extensively used in computers, medical equipment, telecommunications, instruments, and lighting applications.In China, toroida
Dyson
11/06/2025
What causes a transformer to be noisier under no-load conditions?
What causes a transformer to be noisier under no-load conditions?
When a transformer is operating under no-load conditions, it often produces louder noise than under full load. The primary reason is that, with no load on the secondary winding, the primary voltage tends to be slightly higher than nominal. For example, while the rated voltage is typically 10 kV, the actual no-load voltage may reach around 10.5 kV.This elevated voltage increases the magnetic flux density (B) in the core. According to the formula:B = 45 × Et / S(where Et is the designed volts-per-
Noah
11/05/2025
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
When installing an arc suppression coil, it is important to identify the conditions under which the coil should be taken out of service. The arc suppression coil should be disconnected under the following circumstances: When a transformer is being de-energized, the neutral-point disconnector must be opened first before performing any switching operations on the transformer. The energizing sequence is the reverse: the neutral-point disconnector should be closed only after the transformer is energ
Echo
11/05/2025
What fire prevention measures are available for power transformer failures?
What fire prevention measures are available for power transformer failures?
Failures in power transformers are commonly caused by severe overload operation, short circuits due to winding insulation degradation, aging of transformer oil, excessive contact resistance at connections or tap changers, failure of high- or low-voltage fuses to operate during external short circuits, core damage, internal arcing in oil, and lightning strikes.Since transformers are filled with insulating oil, fires can have severe consequences—ranging from oil spraying and ignition to, in extrem
Noah
11/05/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.