Location of Shunt Capacitors

Encyclopedia
09/07/2024

Shunt Capacitors Definition


Shunt capacitors are devices installed in electrical systems to improve power factor by compensating for reactive power.


Distribution System Capacitor Bank


In distribution feeder capacitor bank are installed on pole to compensate reactive power of that particular feeder. These banks are normally mounted on one of the poles on which the distribution feeders run. The mounted capacitor banks are normally interconnected with over head feeder conductors by means of insulated power cable. 


The size of the cable depends upon the voltage rating of the system. The voltage range of the system for which pole mounted capacitor bank can be install, may be from 440 V to 33 KV. The rating of capacitor bank may be from 300 KVAR to MVAR. The pole mounted capacitor bank can be either fixed unit or switched unit depending upon varying load condition.


EHV Shunt Capacitor


In extra high voltage system, the generated electrical power may have to be transmitted a long distance via transmission line. During journey of power, sufficient voltage may be dropped due to inductive effect of the line conductors. This voltage drop may be compensated by providing ∑ HV capacitor bank at ∑ HV sub-station. This drop of voltage is maximum at peak load condition, hence, the capacitor bank installed for in this case should have switching control to make it off and on as when required.


Substation Capacitor Bank


When high inductive load has to be delivered from a high voltage or medium voltage substation, one or more capacitor bank of suitable size should be installed at substation to compensate inductive VAR of the entire load. These capacitors banks are controlled by circuit breaker and provided with lightening arrestors. Typical protection scheme along with protection relays are also provided.


Metal Encoder Capacitor Bank


For small and industrial subtraction indoor type capacitor banks may also be used. These capacitor bank are installed in metal cabinet. This design is compact and bank requires less maintenance. The uses of these banks are more compared to outdoor bank, as these are not exposed to external environment.


Distribution Capacitor Bank


Distribution capacitor banks are normally pole mounted capacitor bank installed nearer to load point or installed at distribution subtraction.


These banks do not help to improve power factor of primary system. These capacitors bank are cheaper than other power capacitors bank. All types of protection schemes for capacitor bank cannot be provided to a pole mounted capacitor bank. Although pole mounted cap bank is outdoor type but sometimes it is kept in metal enclosure to protect from outdoor environmental conditions.


Fixed Capacitor Bank


Some loads, especially industrial ones, need constant reactive power for power factor correction. Fixed capacitor banks, used in such cases, do not have control systems to switch on or off. They operate with the feeders, staying connected as long as the feeders are live.


Switched Capacitor Banks


In high voltage power system, compensation of reactive power is mainly required during peak load condition of system. There may be reverse effect if the bank is connected to the system at mean load condition. At low load condition, the capacitive effect of bank may increase the reactive power of the system instead of decreasing it.


In this situation capacitors bank must be switched ON during peak load poor power factor condition and must also be switched OFF during low load and high power factor condition. Here switched capacitor banks are used. When a capacitor bank is switched ON it provides more or less constant reactive power to the system. It helps to maintain desired power factor of the system even at peak load condition. It prevents, over voltage of system during low load condition as capacitor is disconnected from the system during low load condition. During operation of bank, it reduces losses both of the feeders and transformer of the system as it is directly installed at primary power system.

 

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
What is Static Voltage Regulator?
What is Static Voltage Regulator?
Types of Static Voltage RegulatorThe static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;Servo Type Voltage RegulatorMagnetic Amplifier RegulatorThe types of static voltage regulator are described below in details;Servo Type Voltage RegulatorThe main feature of the servo type voltage regulator is the use of the amplidyne. The am
Edwiin
05/21/2025
What is Arc Extinction Circuit Breaker?
What is Arc Extinction Circuit Breaker?
When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting aDC arcis inherently more challenging than anAC arc. In an AC arc, the current naturally reaches zero duri
Edwiin
05/20/2025
Air Break Circuit Breaker
Air Break Circuit Breaker
In an air break circuit breaker, the arc is initiated and extinguished in substantially static air as the arc moves. These breakers are used for low voltages, generally up to 15 kV, with rupturing capacities of 500 MVA. As an arc-quenching medium, air circuit breakers offer several advantages over oil, including:Elimination of risks and maintenance associated with oil use.Absence of mechanical stress caused by gas pressure and oil movement.Elimination of costs from regular oil replacement due to
Edwiin
05/20/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!