How does the input voltage affect the current flowing through the load resistor in an ideal transformer?

01/24/2025

How Input Voltage Affects the Current Through a Load Resistor in an Ideal Transformer

An ideal transformer is one that assumes no energy losses (such as copper loss or iron loss). Its primary function is to change the levels of voltage and current while ensuring that the input power equals the output power. The operation of an ideal transformer is based on the principle of electromagnetic induction, and there is a fixed turns ratio n between the primary and secondary coils, given by n=N2 /N1, where N1 is the number of turns in the primary coil, and N2 is the number of turns in the secondary coil.Impact of Input Voltage on Load Resistor Current When an input voltage V1 is applied to the primary coil of an ideal transformer, according to the turns ratio n, it induces a corresponding output voltage V2 in the secondary coil, which can be expressed by the following formula:

image.png

If the secondary coil is connected to a load resistor RL , then the current I2 flowing through this load resistor can be calculated using Ohm's Law:

image.png

Substituting the expression for V2 into the above equation gives:

image.png

From this equation, it can be seen that for a given turns ratio n and load resistance RL, the secondary current I2 is directly proportional to the input voltage V1. This means:

  • When the input voltage V1 increases, if the turns ratio n and load resistance RL remain constant, the secondary current I2 will also increase accordingly.

  • When the input voltage V1 decreases, under the same conditions, the secondary current I2 will decrease.

It is important to note that in an ideal transformer, the input power P1 equals the output power P2, so:

image.png

Here, I1 is the current in the primary coil. Since V2=V1×n, then I2=I1/n, indicating that the primary current
I1 is inversely proportional to the secondary current I2, both of which depend on the input voltage V1.

In summary, the input voltage V1 directly influences the current I2 flowing through the load resistor RL in an ideal transformer, and this effect is realized through the transformer’s turns ratio n.

Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!