• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


How do you determine the voltage of a series wound DC motor based on the number of turns on the stator?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Relation between stator winding and voltage

In a DC motor, the number of turns in the stator winding (also known as the armature winding) directly affects the induced electromotive force it generates. The effective value of the induced electromotive force per phase of the stator winding 
E1 can be calculated using the following formula:

E1 = 4.44 K1 f1 N1 Φ

Among them:


  •  
    E1 is the effective value of the induced electromotive force per phase of the stator winding.


  •  
    K1 is the winding coefficient of the stator winding, which depends on the structure of the winding.


  •  
    f1 is the frequency of the induced electromotive force in the stator winding, which is equal to the frequency of the power supply.


  •  
    N1 is the number of turns of wire in series for each phase winding of the stator.

  • Φ   Φ is the pole-pair magnetic flux of the rotating magnetic field, i.e., the maximum value (in webers) of the alternating magnetic flux that passes through the stator windings.

The method to determine the voltage

According to the above formula, we can infer that to determine the voltage of a wound direct current motor, we need to know the following parameters:

  • Stator winding turns  
     
    N1

  • Winding Factor K1

  • Power Frequencyf1

  • Magnetic Flux (Φ)

Once these parameters are known, the induced electromotive force E1 can be calculated using the above formula, which in turn determines the voltage of the motor.

Considerations in practical applications

In practical applications, determining the voltage for a wound-rotor DC motor also needs to consider other factors such as the design requirements of the motor, load characteristics, and overall system performance. Additionally, it is necessary to ensure that the calculated voltage falls within the safe operating range of the motor.

Sample Calculation

Assume we have a DC motor with a stator winding of 38 turns, winding coefficientK1 of 0.9, power frequency 
f1 of 50 Hz, and flux  Φ Φ of 0.001 Weber. Then, we can calculate the induced electromotive force 
E1 as follows:

E1 = 4.44 × 0.9 × 50 × 38 × 0.001 = 7.22 V

Therefore, the voltage of this motor is approximately 7.22V.

Conclusion

Through the above formula and steps, it is possible to determine the voltage of a shunt-wound DC motor based on the number of turns in the stator winding and other relevant parameters. However, in practical applications, it is also necessary to take into account other factors to ensure the normal operation and safety of the motor.


Give a tip and encourage the author!
Recommended
Operation and Fault Handling of High and Low Voltage Power Distribution Systems
Operation and Fault Handling of High and Low Voltage Power Distribution Systems
Basic Composition and Function of Circuit Breaker Failure ProtectionCircuit breaker failure protection refers to a protective scheme that operates when the relay protection of a faulty electrical device issues a trip command but the circuit breaker fails to operate. It uses the protection trip signal from the faulty equipment and the current measurement from the failed breaker to determine breaker failure. The protection can then isolate other relevant breakers within the same substation in a sh
Felix Spark
10/28/2025
Low-Voltage Distribution Cabinet Maintenance Steps and Safety Guide
Low-Voltage Distribution Cabinet Maintenance Steps and Safety Guide
Maintenance Procedure for Low-Voltage Power Distribution FacilitiesLow-voltage power distr ibution facilities refer to the infrastructure that delivers electrical power from a power supply room to end-user equipment, typically including distribution cabinets, cables, and wiring. To ensure the normal operation of these facilities and guarantee user safety and power supply quality, regular maintenance and servicing are essential. This article provides a detailed introduction to the maintenance pro
Edwiin
10/28/2025
Vacuum Circuit Breaker Withstand Voltage Test Guide
Vacuum Circuit Breaker Withstand Voltage Test Guide
Insulation Withstand Voltage Test Standards for Vacuum Circuit BreakersThe main purpose of the insulation withstand voltage test for vacuum circuit breakers is to verify whether the insulation performance of the equipment under high voltage is qualified, and to prevent breakdown or flashover accidents during operation. The test process must be strictly carried out in accordance with power industry standards to ensure equipment safety and power supply reliability.Test ObjectsThe test objects incl
Garca
10/18/2025
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.