• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What are the reasons for high earthing systems only?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

High ground systems (usually referred to as high resistance ground systems) are used mainly for the following reasons:

Limit ground fault current

Reduce the risk of equipment damage

In high-resistance grounding systems, the ground fault current is limited to a relatively low level. When a ground fault occurs, a smaller fault current flows through the ground path. This low level of fault current has less impact on the thermal stress and electrodynamics of electrical equipment (such as transformers, cables, switchgear, etc.) than low resistance ground or direct ground systems. For example, for some precision electrical equipment that is more sensitive to fault currents, the high-resistance grounding system can prevent the heat generated by excessive fault currents from causing damage to the internal insulation of the equipment or deformation of the mechanical structure.

Avoid fault propagation

The smaller ground fault current can avoid more serious faults such as interphase short circuit when a ground fault occurs. In a low-resistance grounding system, a large fault current may produce a strong enough electromagnetic force, so that the electrical equipment around the fault point is subject to mechanical shock, resulting in the destruction of the interphase insulation, thus expanding the fault range. The high resistance grounding system can effectively reduce this risk, so that the fault range is limited to the ground fault point.

Maintain system stability

Reduce voltage dips

When a ground fault occurs, the high resistance grounding system has relatively little impact on the system voltage due to the small fault current. In some industrial sites with high voltage stability requirements, such as continuous production of chemical enterprises or data centers, such systems can reduce voltage sags caused by ground faults. For example, in a data center, if the voltage drops sharply due to a grounding fault, devices such as servers may be shut down or data may be lost. A high-resistance grounding system helps maintain voltage stability and ensure normal device operation.

Improve supply continuity

Because a high-resistance grounding system does not immediately cause the circuit breaker to trip in the event of a grounding fault (it can operate for a period of time with a fault in some cases), this improves the continuity of the power supply. For some important loads that do not allow easy power outages, such as life support systems in hospitals, navigation equipment in airports, etc., high-resistance grounding systems can maintain power during troubleshooting and repair, buying time to ensure the operation of important equipment.

Facilitates fault detection and location

Fault detection

In high resistance grounding system, although the ground fault current is small, it can be accurately detected by special ground fault detection devices (such as zero sequence current transformer, ground fault relay, etc.). These devices can detect the small ground fault current and send an alarm signal to remind the operation and maintenance personnel to troubleshoot the fault in time. For example, in complex electrical systems in large industrial plants, this precise fault detection capability helps to quickly locate fault points and reduce troubleshooting time.

Positioning accuracy

Because the high resistance grounding system limits the diffusion range of the fault current, the path of the fault current is relatively clear, which helps to improve the accuracy of fault location. In a low-resistance grounding system, the fault current may flow through multiple parallel paths. In a high-resistance grounding system, the fault current mainly flows along the path of the grounding resistance, making fault location easier and convenient for operation and maintenance personnel to rectify faults in time.

Give a tip and encourage the author!
Recommended
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
1. On a scorching sunny day, do damaged vulnerable components need to be replaced immediately?Immediate replacement is not recommended. If replacement is necessary, it is advisable to do so in the early morning or late afternoon. You should contact the power station’s operation and maintenance (O&M) personnel promptly, and have professional staff go to the site for replacement.2. To prevent photovoltaic (PV) modules from being hit by heavy objects, can wire mesh protective screens be install
Encyclopedia
09/06/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
1. What are the common faults of distributed photovoltaic (PV) power generation systems? What typical problems may occur in various components of the system?Common faults include inverters failing to operate or start due to voltage not reaching the startup set value, and low power generation caused by issues with PV modules or inverters. Typical problems that may occur in system components are burnout of junction boxes and local burnout of PV modules.2. How to handle common faults of distributed
Leon
09/06/2025
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
Edwiin
08/28/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.