What are the reasons for high earthing systems only?

Encyclopedia
09/28/2024

High ground systems (usually referred to as high resistance ground systems) are used mainly for the following reasons:


Limit ground fault current


Reduce the risk of equipment damage


In high-resistance grounding systems, the ground fault current is limited to a relatively low level. When a ground fault occurs, a smaller fault current flows through the ground path. This low level of fault current has less impact on the thermal stress and electrodynamics of electrical equipment (such as transformers, cables, switchgear, etc.) than low resistance ground or direct ground systems. For example, for some precision electrical equipment that is more sensitive to fault currents, the high-resistance grounding system can prevent the heat generated by excessive fault currents from causing damage to the internal insulation of the equipment or deformation of the mechanical structure.


Avoid fault propagation


The smaller ground fault current can avoid more serious faults such as interphase short circuit when a ground fault occurs. In a low-resistance grounding system, a large fault current may produce a strong enough electromagnetic force, so that the electrical equipment around the fault point is subject to mechanical shock, resulting in the destruction of the interphase insulation, thus expanding the fault range. The high resistance grounding system can effectively reduce this risk, so that the fault range is limited to the ground fault point.


Maintain system stability


Reduce voltage dips


When a ground fault occurs, the high resistance grounding system has relatively little impact on the system voltage due to the small fault current. In some industrial sites with high voltage stability requirements, such as continuous production of chemical enterprises or data centers, such systems can reduce voltage sags caused by ground faults. For example, in a data center, if the voltage drops sharply due to a grounding fault, devices such as servers may be shut down or data may be lost. A high-resistance grounding system helps maintain voltage stability and ensure normal device operation.


Improve supply continuity


Because a high-resistance grounding system does not immediately cause the circuit breaker to trip in the event of a grounding fault (it can operate for a period of time with a fault in some cases), this improves the continuity of the power supply. For some important loads that do not allow easy power outages, such as life support systems in hospitals, navigation equipment in airports, etc., high-resistance grounding systems can maintain power during troubleshooting and repair, buying time to ensure the operation of important equipment.


Facilitates fault detection and location


Fault detection


In high resistance grounding system, although the ground fault current is small, it can be accurately detected by special ground fault detection devices (such as zero sequence current transformer, ground fault relay, etc.). These devices can detect the small ground fault current and send an alarm signal to remind the operation and maintenance personnel to troubleshoot the fault in time. For example, in complex electrical systems in large industrial plants, this precise fault detection capability helps to quickly locate fault points and reduce troubleshooting time.


Positioning accuracy


Because the high resistance grounding system limits the diffusion range of the fault current, the path of the fault current is relatively clear, which helps to improve the accuracy of fault location. In a low-resistance grounding system, the fault current may flow through multiple parallel paths. In a high-resistance grounding system, the fault current mainly flows along the path of the grounding resistance, making fault location easier and convenient for operation and maintenance personnel to rectify faults in time.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Brief Introduction to Thermal Generating UnitsElectricity generation relies on both renewable and non - renewable energy resources. Thermal generating units represent a conventional approach to power production. In these units, fuels such as coal, nuclear energy, natural gas, biofuel, and biogas are combusted within a boiler.The boiler of a generating unit is an extremely complex system. In its simplest conception, it can be visualized as a chamber whose walls are lined with pipes, through which
Edwiin
06/06/2025
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
It is well-known that single-phase and three-phase systems are the most prevalent configurations for power transmission, distribution, and end-use applications. While both serve as fundamental power supply frameworks, three-phase systems offer distinct advantages over their single-phase counterparts.Notably, multi-phase systems (such as 6-phase, 12-phase, etc.) find specific applications in power electronics—particularly in rectifier circuits and variable frequency drives (VFDs)—wher
Edwiin
06/05/2025
How Many Poles and Towers are Situated Within a 1-km Span?
How Many Poles and Towers are Situated Within a 1-km Span?
The number of distribution poles and transmission towers within a 1-kilometer stretch of overhead lines varies significantly based on multiple factors, including voltage level, power line type, supporting structure, geographical location, local regulations, and specific grid requirements.In urban areas, distribution utility poles are typically positioned at closer intervals, while in rural regions, they are spaced farther apart. Additionally, the use of taller structures for higher-voltage trans
Edwiin
06/05/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!