• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Difference Between Porcelain and Glass Insulators

Edwiin
Field: Power switch
China

Key Differences Between Glass and Porcelain Insulators

Both porcelain and glass insulators are widely applied in power transmission and distribution to insulate overhead line conductors from supporting towers and poles. With extended service lives and suitability for high voltage ratings, their unique characteristics and properties define their distinct application scenarios.

Porcelain Insulators

Porcelain, a ceramic material, is valued for its absence of internal defects such as voids, cracks, or thermal expansion when of premium quality. It is manufactured from china clay (naturally occurring aluminum silicate), mixed with plastic kaolin, feldspar (a crystalline silica stone), and quartz (silicon dioxide, SiO₂). This mixture is fired in a kiln at controlled temperatures to form a smooth, durable, and glossy insulator free of porosity.

A high-performance porcelain insulator features a dielectric strength of 60 kV/cm, a compressive strength of 70,000 kg/cm², and a tensile strength of approximately 500 kg/cm². Cement serves as the bonding material, rendering porcelain insulators one of the most prevalently used types in global power transmission and distribution networks.

Glass Insulators

Toughened glass is the core material for these insulators. The glass undergoes heating, melting, and a controlled cooling process (tempering), achieving a dielectric strength of up to 140 kV/cm.

Toughened glass suspension insulators are widely adopted in high-voltage transmission systems (≥ 500 kV) worldwide. With high resistivity, their transparent design offers a key advantage: faulty or arced insulators can be easily identified through visual inspection. Glass insulators exhibit a compressive strength of 10,000 kg/cm² and a tensile strength of 35,000 kg/cm².

Core Contrasts

Porcelain insulators, crafted from ceramic materials, excel in compressive strength (70,000 kg/cm&sup2;) but have lower tensile strength (500 kg/cm&sup2;), suitable for medium to high-voltage applications (<500 kV). Glass insulators, made of toughened glass, feature superior dielectric strength (140 kV/cm) and balanced mechanical properties (compressive strength 10,000 kg/cm&sup2;, tensile strength 35,000 kg/cm&sup2;), ideal for extra-high voltage systems (&ge; 500 kV). The transparency of glass enables straightforward fault detection, while porcelain&rsquo;s non-transparent nature requires physical inspection. Despite higher initial costs, glass insulators demand less maintenance and offer longer lifespans, making them preferable for high-voltage networks where reliability is critical.

 

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.