• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


On Off Control Controller: What is it? (Working Principle)

Electrical4u
Field: Basic Electrical
0
China

What Is An On Off Controller

What is an On Off Controller?

Sometimes, the control element has only two positions either it is fully closed or fully open. This control element does not operate at any intermediate position, i.e. partly open or partly closed position. The control system made for controlling such elements is known as the on-off control theory. In this control system, when process variable changes and crosses a certain preset level, the output value of the system is suddenly fully opened and gives 100 % output.

Generally, in the on-off control system, the output causes a change in the process variable. Hence due to the effect of output, the process variable again starts changing but in the reverse direction.

During this change, when the process variable crosses a certain predetermined level, the output value of the system is immediately closed and output is suddenly reduced to 0%.

As there is no output, the process variable again starts changing in its normal direction. When it crosses the preset level, the output valve of the system is again fully open to give 100% output. This cycle of closing and opening of the output valve continues until the said on-off control system is in operation.

A very common example of on-off control theory is a fan controlling scheme of the transformer cooling system. When transformer runs with such a load, the temperature of the electrical power transformer rises beyond the preset value at which the cooling fans start rotating with their full capacity.

As the cooling fans run, the forced air (output of the cooling system) decreases the temperature of the transformer. When the temperature (process variable) comes down below a preset value, the control switch of fans trip and fans stop supplying forced air to the transformer.

on off control system

After that, as there is no cooling effect of fans, the temperature of the transformer again starts rising due to load. Again when during rising, the temperature crosses the preset value, the fans again start rotating to cool down the transformer.

Theoretically, we assume that there is no lag in the control equipment. That means, there is no time day for on and off operation of control equipment. With this assumption, if we draw a series of operations of an ideal on-off control system, we will get the graph given below.

But in practical on-off control, there is always a non zero time delay for closing and opening action of controller elements.

This time delay is known as dead time. Because of this time delay, the actual response curve differs from the above shown ideal response curve.

Let us try to draw the actual response curve of an on off control system.

on off control system

Say at time T O the temperature of the transformer starts rising. The measuring instrument of the temperature does not respond instantly, as it requires some time delay for heating up and expansion of mercury in temperature sensor bulb say from instant T1 the pointer of the temperature indicator starts rising.

This rising is exponential in nature. Let us at point A, the controller system starts actuating for switching on cooling fans, and finally, after the period of T2 the fans start delivering force air with its full capacity. Then the temperature of the transformer starts decreasing in an exponential manner.

At point B, the controller system starts actuating for switching off the cooling fans, and finally after a period of T3 the fans stop delivering force air. Then the temperature of the transformer again starts rising in the same exponential manner.

N.B.: Here during this operation, we have assumed that the loading condition of the electrical power transformer, ambient temperature and all other conditions of surrounding are fixed and constant.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Analysis of Accident Handling in Transmission Lines
Analysis of Transmission Line Fault HandlingAs a fundamental component of the power grid, transmission lines are widely distributed and numerous, often exposed to diverse geographical and climatic conditions, making them highly susceptible to faults. Common causes include overvoltage, pollution flashover, insulation damage, tree encroachment, and external damage. Line tripping is one of the most frequent faults in power plant and substation operations, with fault types including single-phase-to-
Leon
09/04/2025
The difference between transmission and distribution lines
Transmission lines and distribution lines are both used to carry electrical power from one location to another. However, they differ significantly in key aspects such as primary function, voltage levels, phase configuration, and conductor placement. These differences are essential for understanding their distinct roles in the power system.The Difference Between Transmission and Distribution Line is given below in the tabulated form.Electricity generation is a critical component of the power syst
Edwiin
09/04/2025
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.