Antiferroelectricity

Electrical4u
03/14/2024

This is a physical property associated with antiferroelectric materials. Actually, these are materials having ions which can polarize without external field (spontaneous polarization). As a result, dipoles are ordered or arranged with alternating orientation. That is, adjacent lines will be in anti parallel direction. Electric field causes phase transition in these materials. This phase transition cause large pattern strain and energy change. Antiferroelectricity is highly linked to ferroelectricity. They are contrast with each other. So we have to know that ferroelectricity is also a physical property which polarizes quickly. By varying the direction of the field applied we can invert the direction of polarization. So, the difference is the direction of dipoles after polarization. The former will align anti parallel and latter will align in the same direction. Antiferroelectric property is steady than ferroelectric property in a plain cubic pattern.

The entire macroscopic spontaneous polarization in antiferroelectric material is zero. The reason is that the closest dipoles will cancel each other. This property can emerge or vanish depending on various parameters. The parameters are external field, pressure, growth method, temperature etc. The antiferroelectric property is not piezoelectric. That is there is no change in mechanical character of the material by the application of external field. These materials usually have high dielectric constant. The dipole orientation of this material is similar to the chess board pattern which is shown below.

The examples of antiferroelectric materials are as follows

  • PbZrO3 (Lead Zirconate)

  • NH4H2PO4 (ADP: Ammonium dihydrogen Phosphate)

  • NaNbO3(Sodium Niobate)

Antiferroelectricity and Temperature

The antiferroelectric property will vanish above a particular temperature. This we can call as Antiferroelectric Curie point. The materials and their curie temperature are shown in Table no.1. The dielectric constant (relative permittivity) less and more than this Curie point is investigated. This is done for both first and second order transition. In the second order transition, dielectric constant is continuous all over the Curie point. In the two cases dielectric constant must not be very high.

Double Hysteresis Loop

The hysteresis loop of a perfect antiferroelectric material can be drawn as shown in Figure 2 below. The reversal of spontaneous polarization of these materials gives a double hysteresis loops. The external field applied is a low frequency AC field.

Application of Antiferroelectricity

  • Super capacitors

  • MEMS Application

  • Used in integration with ferromagnetic materials

  • High energy storage devices

  • Photonic application

  • Liquid crystal etc.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What are earthing materials?
What are earthing materials?
Grounding MaterialsGrounding materials are conductive materials used for the grounding of electrical equipment and systems. Their primary function is to provide a low-impedance path to safely direct current into the earth, ensuring personnel safety, protecting equipment from overvoltage damage, and maintaining system stability. Below are some common types of grounding materials:1.Copper Characteristics: Copper is one of the most commonly used grounding materials due to its excellent conductivity
Encyclopedia
12/21/2024
What are the reasons for the excellent high - and - low temperature resistance of silicone rubber?
What are the reasons for the excellent high - and - low temperature resistance of silicone rubber?
Reasons for the Excellent High and Low-Temperature Resistance of Silicone RubberSilicone rubber (Silicone Rubber) is a polymer material primarily composed of siloxane (Si-O-Si) bonds. It exhibits outstanding resistance to both high and low temperatures, maintaining flexibility at extremely low temperatures and enduring prolonged exposure to high temperatures without significant aging or performance degradation. Below are the main reasons for the excellent high and low-temperature resistance of s
Encyclopedia
12/20/2024
What are the characteristics of silicone rubber in terms of electrical insulation?
What are the characteristics of silicone rubber in terms of electrical insulation?
Characteristics of Silicone Rubber in Electrical InsulationSilicone rubber (Silicone Rubber, SI) possesses several unique advantages that make it an essential material in electrical insulation applications, such as composite insulators, cable accessories, and seals. Below are the key features of silicone rubber in electrical insulation:1. Excellent Hydrophobicity Characteristics: Silicone rubber has inherent hydrophobic properties, which prevent water from adhering to its surface. Even in humid
Encyclopedia
12/19/2024
The difference between a Tesla coil and an induction furnace
The difference between a Tesla coil and an induction furnace
Differences Between a Tesla Coil and an Induction FurnaceAlthough both the Tesla coil and the induction furnace utilize electromagnetic principles, they differ significantly in design, working principles, and applications. Below is a detailed comparison of the two:1. Design and StructureTesla Coil:Basic Structure: A Tesla coil consists of a primary coil (Primary Coil) and a secondary coil (Secondary Coil), typically including a resonant capacitor, spark gap, and step-up transformer. The secondar
Encyclopedia
12/12/2024
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!