What is a Transformer Tap?

09/20/2024

What is a Transformer Tap?


Transformer tap definition


The transformer tap refers to a number of connection points set on the winding of the transformer, allowing the transformer ratio (voltage ratio) to be adjusted by changing the number of effective turns of the winding, so as to achieve the regulation of the output voltage. The use of transformer taps can greatly improve the flexibility and reliability of the power system, especially when voltage levels need to be adjusted or in response to load changes.


Tap action


Voltage regulation


  •  Adjusting the output voltage: By changing the ratio of the transformer, the output voltage can be adjusted to keep it at a desired level. This is very important for voltage control in the grid, especially in the case of large load changes or grid voltage fluctuations.


  • No-load regulation: The tap position is adjusted when the transformer is not loaded, which is suitable for situations where frequent regulation is not required.


  • On-load voltage regulation: allows the tap position to be adjusted when the transformer is loaded, which is suitable for frequent voltage regulation.


Load matching


Adapt to load changes: By adjusting the transformer ratio, the load demand can be better matched to ensure the stability and reliability of the power supply.


Fault protection


  • Overvoltage protection: When the power grid voltage is too high, the output voltage can be reduced by adjusting the tap to protect downstream devices from overvoltage.


  • Overload protection: When the load is too large, the current can be reduced by adjusting the tap to avoid the overload of the transformer.


System equilibrium


Balanced voltage distribution: When multiple transformers are running in parallel, the voltage distribution between the transformers can be balanced by adjusting the tap to ensure the stability of the system operation.


Economic operation


Energy-saving operation: By adjusting the tap, the operation state of the transformer can be optimized, the energy loss can be reduced, and the economy of the system can be improved.


Tap position


Taps are usually set on the high voltage side winding of the transformer, because the high voltage side of the current is smaller, it is easier to achieve the switch of taps. In some special cases, taps may also be installed on the low pressure side.


Types of taps


According to different use occasions and needs, taps can have different types:


  • Fixed tap: The position has been set at the time of manufacturing, and cannot be adjusted.


  • Adjustable tap: Allows the position to be adjusted on the fly to suit different operating requirements.


  • Load regulator tap: can be adjusted with load, suitable for frequent adjustment.


  • No load regulator tap: can only be adjusted when the load is disconnected, suitable for situations that do not require frequent adjustment.


Tap switching device


In order to achieve the switching of taps, special switching devices need to be used, common are:


  • Tap changer: It is used to switch the tap position during the operation of the transformer, which is divided into no-load tap changer and on-load tap changer.


  • Switching switch: Used to manually or automatically switch the tap position in the state of power failure.


Application scenario


Transformer taps are widely used in all aspects of power systems:


  • Power transmission: In long-distance transmission, the line voltage drop is compensated by adjusting the tap to ensure that the end voltage is stable.


  • Distribution network: In the urban distribution network, the tap is adjusted to cope with load changes in different periods of time to maintain voltage stability.


  • Industrial applications: In industrial electrical equipment, the tap is adjusted to meet the voltage requirements under different load conditions.


Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Fault Analysis and Treatment of Oil-Immersed Transformers
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
08/29/2025
The Role of Transformers in Improving Power Quality
The Role of Transformers in Improving Power Quality
Transformers and Their Role in Enhancing Power QualityTransformers are fundamental components in power systems, playing a critical role in maintaining and improving electrical power quality. Power quality refers to the degree to which electrical energy conforms to defined parameters, including voltage stability, frequency, waveform integrity, and reliability. This article explores the significant contributions of transformers to power quality improvement.Voltage RegulationOne of the primary func
Vziman
08/19/2025
Transformer Connection Sections
Transformer Connection Sections
Transformer Connection DesignationsThe transformer connection designation indicates the winding connection method and the phase relationship between the line voltages of the primary and secondary windings. It consists of two parts: letters and a number. The letters on the left denote the connection configurations of the high-voltage and low-voltage windings, while the number on the right is an integer from 0 to 11.This number represents the phase shift of the low-voltage winding's line voltage r
08/15/2025
Classification and Working Principle of Power Transformers
Classification and Working Principle of Power Transformers
Power transformers can be classified into several categories based on their purpose, structure, and other characteristics:According to purpose:Step-up transformer:Increases voltage from low to high levels, enabling efficient long-distance power transmission.Step-down transformer:Decreases voltage from high to low levels, supplying power to local or nearby loads through distribution networks.According to phase number:Single-phase transformerThree-phase transformerAccording to winding arrangement:
Vziman
08/11/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!