• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Earthing system

Ω*m
V
Description

This tool calculates the grounding resistance of an earthing system based on soil resistivity, electrode type, and geometric parameters. It helps verify compliance with IEC 60364-4-41 for coordination between earth electrodes and residual current devices (RCBOs). The calculated resistance is compared to the safety voltage limit (typically 50 V or 25 V) to ensure safe operation and proper tripping of protective devices.

Input Parameters:

• Type of ground electrode – Physical form of the grounding element:

- Rod

- Horizontal rope

- Ring

- Mesh network

• Soil Type – The type of soil where the electrode is installed. Used to estimate resistivity (ρ). Typical values:

- Agricultural: 10–150 Ω·m

- Sandy gravelly: 50–300 Ω·m

- Clay: 50–200 Ω·m

- Marine sands: 200–3000 Ω·m

- Rocky: 1500–10000 Ω·m

- Custom: User-defined value

• Quantity (n) – Number of parallel grounding electrodes used.

• Length (L) – Total length of the grounding conductor in meters.

- For Rod: depth of the vertical rod

- For Horizontal rope: total length of the conductor

- For Ring: circumference of the ring

- For Mesh network: total length of all buried conductors

• Resistivity (ρ) – Soil resistivity in ohm-meters (Ω·m). If not measured, use typical values from soil type.

• Safety Voltage – Maximum allowable touch voltage:

- 50 V: Normal dry environments

- 25 V: Wet, confined, or high-risk locations

Usage Tip:

Enter the parameters and calculate the grounding resistance. Then check if:

R ≤ U₀ / IΔn

Where:

R = Ground resistance (Ω)

U₀ = Safety voltage (50 V or 25 V)

IΔn = Rated residual operating current of RCBO (e.g., 0.03 A for 30 mA)

Example: For 30 mA RCBO and 50 V safety limit:

R ≤ 50 / 0.03 ≈ 1667 Ω → System is acceptable if R < 1667 Ω.

Give a tip and encourage the author!
Recommended
Lightning conductor
Lightning conductor
This tool calculates the protected area between two lightning rods based on the IEC 62305 standard and the Rolling Sphere Method, suitable for building, tower, and industrial facility lightning protection design. Parameter Description Current Type Select the type of current in the system: - Direct Current (DC) : Common in solar PV systems or DC-powered equipment - Alternating Single-Phase (AC Single-Phase) : Typical in residential power distribution Note: This parameter is used to distinguish input modes but does not affect the protection zone calculation directly. Inputs Choose input method: - Voltage/Power : Enter voltage and load power - Power/Resistance : Enter power and line resistance Tip: This feature may be used for future extensions (e.g., ground resistance or induced voltage calculation), but it does not influence the geometric protection range. Height of Lightning Rod A The height of the primary lightning rod, in meters (m) or centimeters (cm). Usually the taller rod, defining the upper boundary of the protection zone. Height of Lightning Rod B The height of the second lightning rod, same unit as above. If the rods are of different heights, an unequal-height configuration is formed. Space Between Two Lightning Rods Horizontal distance between the two rods, in meters (m), denoted as (d). General rule: \( d \leq 1.5 \times (h_1 + h_2) \), otherwise effective protection cannot be achieved. Height of the Protected Object The height of the structure or equipment to be protected, in meters (m). This value must not exceed the maximum allowable height within the protection zone. Usage Recommendations Prefer equal-height rods for simpler design Keep spacing less than 1.5 times the sum of rod heights Ensure the protected object's height is below the protection zone For critical facilities, consider adding a third rod or using a meshed air-termination system
Calculation of resistance
Calculation of resistance
Calculate resistance using voltage, current, power, or impedance in AC/DC circuits. “Tendency of a body to oppose the passage of an electric current.” Calculation Principle Based on Ohm's Law and its derivatives: ( R = frac{V}{I} = frac{P}{I^2} = frac{V^2}{P} = frac{Z}{text{Power Factor}} ) Where: R : Resistance (Ω) V : Voltage (V) I : Current (A) P : Power (W) Z : Impedance (Ω) Power Factor : Ratio of active to apparent power (0–1) Parameters Current Type Direct Current (DC) : Current flows steadily from positive to negative pole. Alternating Current (AC) : Direction and amplitude vary periodically with constant frequency. Single-phase system : Two conductors — one phase and one neutral (zero potential). Two-phase system : Two phase conductors; neutral is distributed in three-wire systems. Three-phase system : Three phase conductors; neutral is included in four-wire systems. Voltage Difference in electric potential between two points. Input method: • Single-phase: Enter Phase-Neutral voltage • Two-phase / Three-phase: Enter Phase-Phase voltage Current Flow of electric charge through a material, measured in amperes (A). Power Electric power supplied or absorbed by a component, measured in watts (W). Power Factor Ratio of active power to apparent power: ( cos phi ), where ( phi ) is the phase angle between voltage and current. Value ranges from 0 to 1. Pure resistive load: 1; inductive/capacitive loads: < 1. Impedance Total opposition to alternating current flow, including resistance and reactance, measured in ohms (Ω).
Calculation of active power
Calculation of active power
Active power, also known as real power, is the portion of electrical power that performs useful work in a circuit—such as producing heat, light, or mechanical motion. Measured in watts (W) or kilowatts (kW), it represents the actual energy consumed by a load and is the basis for electricity billing. This tool calculates active power based on voltage, current, power factor, apparent power, reactive power, resistance, or impedance. It supports both single-phase and three-phase systems, making it ideal for motors, lighting, transformers, and industrial equipment. Parameter Description Parameter Description Current Type Select circuit type: • Direct Current (DC): Constant flow from positive to negative pole • Single-phase AC: One live conductor (phase) + neutral • Two-phase AC: Two phase conductors, optionally with neutral • Three-phase AC: Three phase conductors; four-wire system includes neutral Voltage Electric potential difference between two points. • Single-phase: Enter **Phase-Neutral voltage** • Two-phase / Three-phase: Enter **Phase-Phase voltage** Current Flow of electric charge through a material, unit: Amperes (A) Power Factor Ratio of active power to apparent power, indicating efficiency. Value between 0 and 1. Ideal value: 1.0 Apparent Power Product of RMS voltage and current, representing total power supplied. Unit: Volt-Ampere (VA) Reactive Power Energy alternately flowing in inductive/capacitive components without conversion to other forms. Unit: VAR (Volt-Ampere Reactive) Resistance Opposition to DC current flow, unit: Ohm (Ω) Impedance Total opposition to AC current, including resistance, inductance, and capacitance. Unit: Ohm (Ω) Calculation Principle The general formula for active power is: P = V × I × cosφ Where: - P: Active power (W) - V: Voltage (V) - I: Current (A) - cosφ: Power factor Other common formulas: P = S × cosφ P = Q / tanφ P = I² × R P = V² / R Example: If voltage is 230V, current is 10A, and power factor is 0.8, then active power is: P = 230 × 10 × 0.8 = 1840 W Usage Recommendations Monitor active power regularly to assess equipment efficiency Use data from energy meters to analyze consumption patterns and optimize usage Consider harmonic distortion when dealing with nonlinear loads (e.g., VFDs, LED drivers) Active power is the basis for electricity billing, especially under time-of-use pricing schemes Combine with power factor correction to improve overall energy efficiency
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.