• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is Inverse Time Relay?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

What is Inverse Time Relay?


Inverse Time Relay Definition


An inverse time relay is defined as a relay where the operation time decreases as the actuating quantity increases.


Operating Time Relationship


The relay’s operating time is inversely proportional to the magnitude of the actuating quantity, meaning higher quantities result in faster relay operation.


Mechanical Accessories


Inverse time relays use mechanical accessories, such as a permanent magnet in an induction disc relay or an oil dash-pot in a solenoid relay, to achieve inverse time delay.


Characteristics Of An Inverse Time Relay


cf2b4fcb3094b7065dc77b8931b51844.jpeg

 

Here, in the graph it is clear that, when, actuating quantity is OA, the operating time of the relay is OA’, when actuating quantity is OB, the relay operating time is OB’ and when actuating quantity is OC, the relay operating quantity is OC’.


The graph also shows that if the actuating quantity is less than OA, the relay’s operating time becomes infinite, meaning the relay does not actuate. The minimum value of actuating quantity needed to start the relay is called the pick-up value, denoted as OA.


The graph indicates that as the actuating quantity approaches infinity, the operating time does not reach zero but instead approaches a constant value. This is the minimum time required to operate the relay.


During relay coordination in electrical power system protection scheme, there is some time intentionally required, to operate some specific relays after some specific time delays. Definite time lag relays are those which operate after a specific time.


The time lag between instant when the actuating current crosses the pickup level and the instant when relay contacts finally closed, is constant. This delay does not depend up on magnitude of actuating quantity. For all actuating quantity, above pick up values, the relay operating time is constant.

Give a tip and encourage the author!
Recommended
What lightning protection measures are used for H61 distribution transformers?
What lightning protection measures are used for H61 distribution transformers?
What lightning protection measures are used for H61 distribution transformers?A surge arrester should be installed on the high-voltage side of the H61 distribution transformer. According to SDJ7–79 "Technical Code for Design of Overvoltage Protection of Electric Power Equipment," the high-voltage side of an H61 distribution transformer should generally be protected by a surge arrester. The grounding conductor of the arrester, the neutral point on the low-voltage side of the transformer, and the
Felix Spark
12/08/2025
How to Implement Transformer Gap Protection & Standard Shutdown Steps
How to Implement Transformer Gap Protection & Standard Shutdown Steps
How to Implement Transformer Neutral Grounding Gap Protection Measures?In a certain power grid, when a single-phase ground fault occurs on a power supply line, both the transformer neutral grounding gap protection and the power supply line protection operate simultaneously, causing an outage of an otherwise healthy transformer. The main reason is that during a system single-phase ground fault, the zero-sequence overvoltage causes the transformer neutral grounding gap to break down. The resulting
Noah
12/05/2025
110kV Transformer Zero-Sequence Protection: Issues & Improvement Measures
110kV Transformer Zero-Sequence Protection: Issues & Improvement Measures
Problems with Zero-Sequence Protection of 110 kV TransformersIn an effectively grounded system, the neutral-to-ground displacement voltage of a transformer is limited to a certain level, and the neutral-point gap protection does not operate. The purpose of installing gap protection is to prevent damage to transformer insulation caused by elevated zero-sequence voltage in non-effectively grounded systems. The discharge gap only operates when a single-phase ground fault occurs, all directly ground
Echo
12/03/2025
Chinese Protection Relay Earns IEC 61850 Ed2.1 Level-A Certification
Chinese Protection Relay Earns IEC 61850 Ed2.1 Level-A Certification
Recently, the NSR-3611 low-voltage protection and control device and the NSD500M high-voltage measurement and control device—both developed by a Chinese protection and control equipment manufacturer—successfully passed the IEC 61850 Ed2.1 Server Level-A certification test conducted by DNV (Det Norske Veritas). The devices have been awarded the international Level-A certification by the Utilities Communication Architecture International Users Group (UCAIug). This milestone marks the manufacturer
Baker
12/02/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.