What is Inverse Time Relay?

Encyclopedia
09/11/2024

What is Inverse Time Relay?


Inverse Time Relay Definition


An inverse time relay is defined as a relay where the operation time decreases as the actuating quantity increases.


Operating Time Relationship


The relay’s operating time is inversely proportional to the magnitude of the actuating quantity, meaning higher quantities result in faster relay operation.


Mechanical Accessories


Inverse time relays use mechanical accessories, such as a permanent magnet in an induction disc relay or an oil dash-pot in a solenoid relay, to achieve inverse time delay.


Characteristics Of An Inverse Time Relay


cf2b4fcb3094b7065dc77b8931b51844.jpeg

 

Here, in the graph it is clear that, when, actuating quantity is OA, the operating time of the relay is OA’, when actuating quantity is OB, the relay operating time is OB’ and when actuating quantity is OC, the relay operating quantity is OC’.


The graph also shows that if the actuating quantity is less than OA, the relay’s operating time becomes infinite, meaning the relay does not actuate. The minimum value of actuating quantity needed to start the relay is called the pick-up value, denoted as OA.


The graph indicates that as the actuating quantity approaches infinity, the operating time does not reach zero but instead approaches a constant value. This is the minimum time required to operate the relay.


During relay coordination in electrical power system protection scheme, there is some time intentionally required, to operate some specific relays after some specific time delays. Definite time lag relays are those which operate after a specific time.


The time lag between instant when the actuating current crosses the pickup level and the instant when relay contacts finally closed, is constant. This delay does not depend up on magnitude of actuating quantity. For all actuating quantity, above pick up values, the relay operating time is constant.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
What is Static Voltage Regulator?
What is Static Voltage Regulator?
Types of Static Voltage RegulatorThe static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;Servo Type Voltage RegulatorMagnetic Amplifier RegulatorThe types of static voltage regulator are described below in details;Servo Type Voltage RegulatorThe main feature of the servo type voltage regulator is the use of the amplidyne. The am
Edwiin
05/21/2025
What is Arc Extinction Circuit Breaker?
What is Arc Extinction Circuit Breaker?
When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting aDC arcis inherently more challenging than anAC arc. In an AC arc, the current naturally reaches zero duri
Edwiin
05/20/2025
Air Break Circuit Breaker
Air Break Circuit Breaker
In an air break circuit breaker, the arc is initiated and extinguished in substantially static air as the arc moves. These breakers are used for low voltages, generally up to 15 kV, with rupturing capacities of 500 MVA. As an arc-quenching medium, air circuit breakers offer several advantages over oil, including:Elimination of risks and maintenance associated with oil use.Absence of mechanical stress caused by gas pressure and oil movement.Elimination of costs from regular oil replacement due to
Edwiin
05/20/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!